Page 57 - Complementarity and Variational Inequalities in Electronics
P. 57

48  Complementarity and Variational Inequalities in Electronics
















                           FIGURE 4.2 K and K ∞ .


                           Example 16. Let
                                                         2
                                           K ={(x 1 ,x 2 ) ∈ R : x 1 ≥ 0,x 1 x 2 ≥ 1}.

                           Then
                                                           2
                                           K ∞ ={(x 1 ,x 2 ) ∈ R : x 1 ≥ 0,x 2 ≥ 0}.
                           Indeed, (1,1) ∈ K and z = (z 1 ,z 2 ) ∈ K ∞ if and only if

                                             (∀λ> 0) : (λz 1 + 1,λz 2 + 1) ∈ K,

                           that is,
                                                 (∀λ> 0) : λz 1 + 1 ≥ 0

                           and
                                             (∀λ> 0) : (λz 1 + 1)(λz 2 + 1) ≥ 1.
                           Thus, if z = (z 1 ,z 2 ) ∈ K ∞ , then

                                                                 1
                                                   (∀λ> 0) : z 1 ≥−
                                                                 λ
                           and
                                                            z 1  z 2
                                              (∀λ> 0) : z 1 z 2 +  +  ≥ 0.
                                                             λ   λ
                           Taking the limit as λ →+∞, we obtain z 1 ≥ 0 and z 1 z 2 ≥ 0. Then we also have
                           z 2 ≥ 0. Let us now suppose that z 1 ≥ 0 and z 2 ≥ 0. This results in (∀λ> 0) :
                           λz 1 + 1 ≥ 1, λz 2 + 1 ≥ 1, and thus (λz 1 + 1)(λz 2 + 1) ≥ 1; therefore (∀λ> 0) :
                           (λz 1 ,λz 2 ) + (1,1) ∈ K, and thus (z 1 ,z 2 ) ∈ K ∞ (see Fig. 4.2).

                           Example 17. Let
                                                    2
                                     K ={(x 1 ,x 2 ) ∈ R : x 1 ≥ 2,−x 1 + 4 ≤ x 2 ≤ x 1 + 4}.
   52   53   54   55   56   57   58   59   60   61   62