Page 59 - Complementarity and Variational Inequalities in Electronics
P. 59

50  Complementarity and Variational Inequalities in Electronics


                                                     1
                                                = sup   (x 0 + λx) −  (x 0 ) .
                                                  λ>0 λ
                           The definition of   ∞ does not depend on the choice of x 0 ∈ D( ).Wehave
                           indeed the following result.
                                                   n
                           Proposition 7. Let   ∈   0 (R ;R ∪{+∞}). We have
                                          (tv)
                             ∞ (x) = liminf
                                   t→+∞    t
                                    v→x
                                             (t n x n )                 n
                                 = inf{liminf      :{t n }⊂ R + \{0},{x n }⊂ R ,t n →+∞,x n → x}.
                                              t n
                           Proof. Set
                                                              (tx)
                                              	 ∞ (x) = liminf    .
                                                       t→+∞    t
                                                        v→x
                                   n
                           Let x ∈ R and x 0 ∈ D( ). Consider a sequence {t n }⊂ R + \{0} such that t n →
                           +∞.Wehave
                                                               (t n z n )
                                                	 ∞ (x) ≤ liminf
                                                         n→∞    t n
                                       x 0
                           with z n = x +  → x. Therefore
                                       t n
                                                         (t n x + x 0 )
                                          	 ∞ (x) ≤ liminf        =   ∞ (x).          (4.3)
                                                  n→+∞      t n
                                                  n
                           Let {λ n }⊂ R + \{0}, {x n }⊂ R be sequences such that λ n →+∞ and x n → x.
                           For all λ> 0, we obtain (for n large enough) by the convexity and lower semi-
                           continuity of  :
                                                             λ       λ
                                      (x 0 + λx) ≤ liminf ((1 −  )x 0 +  λ n x n )
                                                 n→∞         λ n    λ n
                                                            λ         λ
                                               ≤ liminf{(1 −  ) (x 0 ) +   (λ n x n )}
                                                 n→∞       λ n        λ n
                                                                (λ n x n )
                                               =  (x 0 ) + λliminf     .
                                                          n→∞     λ n
                           Thus
                                           (x 0 + λx) −  (x 0 )     (λ n x n )
                                                           ≤ liminf       .
                                                  λ          n→+∞     λ n
                                                                                     n
                           This last inequality holds for any sequences {λ n }⊂ R + \{0} and {x n }⊂ R such
                           that λ n →+∞ and x n → x. Thus
                                               (x 0 + λx) −  (x 0 )
                                                               ≤ 	 ∞ (x),
                                                     λ
   54   55   56   57   58   59   60   61   62   63   64