Page 64 - Complementarity and Variational Inequalities in Electronics
P. 64

A Variational Inequality Theory Chapter | 4 55


                                                         n
                           Proposition 12. Let   1 ,  2 ∈   0 (R ;R ∪{+∞}). Suppose that   1 +   2 is
                           proper. Then

                                           n
                                     (∀x ∈ R ) : (  1 +   2 ) ∞ (x) = (  1 ) ∞ (x) + (  2 ) ∞ (x).
                           Proof. Since the function   1 +  2 is proper, there exists x 0 ∈ D(  1 )∩D(  2 ).
                           We have

                                                      1
                                 (  1 +   2 ) ∞ (x) = lim  (  1 +   2 )(x 0 + λx)
                                                λ→+∞ λ
                                                      1                   1
                                              = lim      1 (x 0 + λx) + lim    2 (x 0 + λx)
                                                λ→+∞ λ              λ→+∞ λ
                                              = (  1 ) ∞ (x) + (  2 ) ∞ (x).

                                                 n
                                                                                 n
                           Remark 15. Let   ∈   0 (R ;R ∪{+∞}) and suppose that K ⊂ R is a closed
                           convex set such that D( ) ∩ K 
= ∅.Using Propositions 11 and 12, we get
                                             n
                                       (∀x ∈ R ) : (  +   K ) ∞ (x) =   ∞ (x) +   K ∞ (x).
                           Example 20 (Ideal diode). The recession function of the electrical superpoten-
                           tial of the ideal diode (see Section 2.3.1 in Chapter 2)is

                                                                         (x).
                                          (∀x ∈ R) : (ϕ D ) ∞ (x) = ϕ D (x) =   R +
                           Example 21 (Practical diode and ideal Zener diode). The recession function of
                           the electrical superpotential of the practical diode (see Section 2.3.2 in Chap-
                           ter 2)is


                                                                  V 1 x  if x ≥ 0,
                                     (∀x ∈ R) : (ϕ D ) ∞ (x) = ϕ D (x) =
                                                                  V 2 x  if x< 0.
                           The same result is valid for the ideal Zener diode (see Section 2.3.4 in Chap-
                           ter 2). The recession function of the electrical superpotential of the ideal Zener
                           diode is


                                                                  V 1 x  if  x ≥ 0,
                                     (∀x ∈ R) : (ϕ Z ) ∞ (x) = ϕ Z (x) =
                                                                  V 2 x  if  x< 0.
                           Example 22 (Complete diode model). The recession function of the electrical
                           superpotential of the complete diode (see Section 2.3.3 in Chapter 2)is


                                                              V 4 x  if x ≤ I R2 ,
                                       (∀x ∈ R) : (ϕ CD ) ∞ (x) =
                                                              +∞   if x> I R2 .
   59   60   61   62   63   64   65   66   67   68   69