Page 63 - Complementarity and Variational Inequalities in Electronics
P. 63

54  Complementarity and Variational Inequalities in Electronics


                                                   n
                           Proposition 9. Let   ∈   0 (R ;R ∪{+∞}). Then
                                                     n
                                      (∀x ∈ D( ),e ∈ R ) :   ∞ (e) ≥  (x + e) −  (x).
                           Proof. We have
                                                 (x + λe) −  (x)
                                       ∞ (e) = sup              ≥  (x + e) −  (x).
                                             λ>0       λ
                                                    n
                           Proposition 10. Let   ∈   0 (R ;R ∪{+∞}).If   is bounded from below, then
                                                       n
                                                 (∀x ∈ R ) :   ∞ (x) ≥ 0.
                                                      n
                           Proof. Let x 0 ∈ D( ).If (∀x ∈ R ) :  (x) ≥ c, then
                                                        (tx + x 0 )  −1
                                              (∀ t> 0) :         ≥ ct  ,
                                                           t
                           and thus

                                                  ∞ (x) ≥ lim ct −1  = 0.
                                                         t→∞
                                                                             n
                           Proposition 11. If K is a nonempty closed convex subset of R , then
                                                                .
                                                    (  K ) ∞ =   K ∞
                           Proof. Let x 0 ∈ K.If x ∈ K ∞ , then (see Proposition 6) for all λ> 0, x 0 +
                                         1
                           λx ∈ K, and thus   K (x 0 + λx) = 0. This results in
                                         λ
                                               (∀x ∈ K ∞ ) : (  K ) ∞ (x) = 0.

                           If x/∈ K ∞ , then there exists λ> 0 such that
                                                     x 0 + λx /∈ K,

                           and thus
                                            1
                                             (  K (x 0 + λx) −   K (x 0 )) =+∞.
                                            λ
                           This results in
                                                   1
                                     (  K ) ∞ (x) = sup (  K (x 0 + λx) −   K (x 0 )) =+∞.
                                                λ>0 λ
                           Thus

                                             (∀x/∈ K ∞ ) : (  K ) ∞ (x) =+∞.
                           We have proved that
                                                      n
                                               (∀x ∈ R ) : (  K ) ∞ ≡   K ∞ .
   58   59   60   61   62   63   64   65   66   67   68