Page 62 - Complementarity and Variational Inequalities in Electronics
P. 62

A Variational Inequality Theory Chapter | 4 53










                           FIGURE 4.4 f and f ∞ .


                           Simple calculations (see Fig. 4.4)give


                                                        +∞    if  x< 0
                                              f ∞ (x) =
                                                         3x   if x ≥ 0.
                           Indeed, if x< 0, then
                                                  1               2
                                             lim   f(λx) = lim λx =+∞,
                                            λ→+∞ λ         λ→+∞

                           whereas if x ≥ 0, then
                                                   1
                                               lim  f(λx) = lim 3x = 3x.
                                             λ→+∞ λ         λ→+∞
                                                                                         n
                           Example 19. Let M ∈ R n×n  be a positive semidefinite matrix, and let q ∈ R .
                                               n
                                                     n
                           Define the function f : R → R by
                                                       1
                                                f(x) =  Mx,x + q,x .
                                                       2
                           Then
                                                ⎧
                                                    q,x  if x ∈ ker(M + M ),
                                                ⎨                        T
                                         f ∞ (x) =
                                                                         T
                                                   +∞
                                                ⎩        if  x/∈ ker(M + M ).
                                                                1
                                                                         T
                                                T
                           Indeed, if x ∈ ker(M + M ), then  Mx,x =  (M + M )x,x = 0, and
                                                                2
                                                 1
                                            lim   f(λx) = lim  q,x = q,x .
                                           λ→+∞ λ        λ→+∞
                                                          1
                                                                   T
                                          T
                           If x/∈ ker(M + M ), then  Mx,x =  (M + M )x,x  > 0, and
                                                          2
                                            1
                                        lim  f(λx) = lim λ Mx,x + q,x =+∞.
                                      λ→+∞ λ         λ→+∞
                              Let us now state some additional important properties of the recession func-
                           tion.
   57   58   59   60   61   62   63   64   65   66   67