Page 344 - Computational Fluid Dynamics for Engineers
P. 344

334                                 11.  Incompressible  Navier-Stokes  Equations





                         «E*H
         Ay


                  —» a  J)       — »
               |(i-l/2,j)       ,0+1/2, jb
                              <N


                        - 1 ^ -
                                 —       •    Fig.  11.1. Difference  stencil  for  derivatives
                                  L\X         in the  x-direction.



                              <Pi+l/2,j  ~  AE t+l/2,j  ~  AE i+l/2,j   (11.4.17a)
                                                                        (11.4.17b)
                              &J+1/2  =  ^ ^ ' + 1 / 2  "  ^ 7 i + l / 2
         where  AE ±  and  AF ±  are  the  flux  difFerences  across  the  positive  or  negative
         traveling  waves.  As  discussed  in  [9], they  are  given  by

                                                                        (11.4.18a)


                                                                        [11.4.18b)
         Here

                                   D
              A+i/2,j  =  ^ A + i j  + M")  ^ A + i / 2 , j  =  A+i,j  -  A , j  (11.4.19a)
                          (
              A j + i / 2  =  « ( A j + i  +  A j )  ^ A j + i / 2  =  A j + i  -  A j  (11.4.19b)


                                  t
         11.4.3  Discretization  of he  Viscous  Fluxes
         The  discretization  of the  viscous  fluxes  is much  more  simple than  the  discretiza-
        tion  of  the  convective  fluxes.  Viscous  diffusion  occurs  in  all  direction,  and  the
         discretization  of  the  viscous  terms  is  always  performed  with  central  formulas
         [11].  Here  we  approximate  the  viscous  fluxes  in  Eqs.  (P2.17.2)  with  second-
         order  accuracy  on  a  compact  stencil

                                                     E
                                      E
                              6E V  _  ( v)i+l/2,j  -  ( v)i-l/2,j
                                                                        (11.4.20a)
                               dx              Ax
                                      F
                                                     F
                                   _  ( v)jj+l/2  -  ( v)i,j-l/2
                              dF v
                                                                        (11.4.20b)
                               dy              Ay
   339   340   341   342   343   344   345   346   347   348   349