Page 360 - Computational Fluid Dynamics for Engineers
P. 360

350                                 11.  Incompressible  Navier-Stokes  Equations



         convergence  in  this  case.  This  required  32  minutes  on  a  Cray  C90  for  the  SST
         model,  and  the  DM  calculation  used  27 minutes  of  Cray  C90  CPU  time.



         References

            Harlow,  F. H.  and  Welsh,  J.E.:  Physics  of Fluids,  Vol.  8, pp.  2182-2189,  1965.
            Fletcher,  C. A. J.:  Computational  Techniques  for  Fluid  Dynamics,  Volume  2,  Springer-
            Verlag,  1988.
            Patankar,  S. V.  and  Spalding,  D.B.:  International  Journal  of  Heat  and  Mass  Tranfer,
            Vol.  15, pp.  1787-1806,  1972.
            Ferziger,  J. H.  and  Peric,  M.:  Computational  Methods  for  Fluid  Dynamics,  Springer-
            Verlag,  1996.
            Chorin,  A. J.:  A  numerical  method  for  solving  incompressible  viscous  flow  problems.
            J.  Comput.  Phys.,  Vol.  2, p.  12,  1967.
            Gustafson,  B. and  Sundstrom,  A.: SIAM  J.  Applied  Math.,  Vol. 35, pp. 343-357,  1978.
            Chang,  J. L. and  Kwak,  D.: On the  Method  of Pseudo  Compressibility  for  numerically
            solving  incompressible  flows,  AIAA  22nd  Aerospace  Sciences  meeting,  AIAA  Paper
            84-0252,  1984.
            Roger,  S.E.  and  Kwak,  D.:  An  upwind  differencing  scheme  for  the  time  accurate
            incompressible  Navier-Stokes  equations.  AIAA  J.,  Vol.  28, No.  2, pp.  253-262,  1990.
            Roger,  S.E.  and  Kwak,  D.:  An  upwind  differencing  scheme  for  the  incompressible
            Navier-Stokes  equations.  AIAA  J.,  Vol.  8, pp.  43-64,  1991.
            Roger,  S. E.,  Kwak,  D., Kiris,  C :  Steady  and  unsteady  solutions  of the  incompressible
            Navier-Stokes  equations.  AIAA  J.,  Vol.  4,  No.  4, pp.  603-610,  1991.
            Hirsh,  C :  Numerical  Computation  of  Internal  and  External  Flows,  Volume  2,  John
            Wiley  and  Sons,  N.Y.,  1988.
            Allen,  Timothy  J.:  Stability-Transition  Properties  of  Sudden  Expansion  Flows  in
            Ducts,  MS  Thesis,  California  State  University,  Long  Beach,  1990.
            Kwon,  O.K.,  Pletcher,  R. H.  and  Lewis,  J. P.:  Prediction  of  Sudden  Expansion  Flows
            Using the  Boundary-Layer  Equations,  J.  of Fluids  Engineering,  Vol.  106, pp.  285-290,
            1984.
            Hung,  T. K.:  Laminar  Flow  in  Conduit  Expansion,  Ph.D.  Dissertation,  University  of
            Iowa,  Iowa  City,  1966.
            Agarwal,  R. K.:  A Third-Order-Accurate  Upwind  Scheme  for  Navier-Stokes  Solutions
            at  High  Reynolds  Numbers,  AIAA  Paper  81-0112, 1981.
            Cebeci,  T.  and  Cousteix,  J.:  Modeling  and  Computation  of  Boundary-Layer  Flows,
            2nd  edn.  Horizons  Pub.,  Long  Beach,  Calif,  and  Springer-Verlag,  Heidelberg,  2005.
            Rogers,  S.E.:  Progress  In  High-Lift  Aerodynamic  Calculations,  AIAA  Paper  93-0194,
            Jan.  1993.
            Rogers,  S.E.,  Wiltberger,  N. L.  and  Kwak,  D.:  Efficient  Simulation  of  Incompressible
            Viscous Flow Over  Single and Multi-Element  Airfoils,  AIAA Paper  92-0405, Jan.  1992.
            Also appears  in  J.  of  Aircraft,  Vol.  30,  No.  5, pp.  736-743, Sept.  1993.
            Rogers,  S.E.,  Mentor,  F.,  Durbin,  P. A.  and  Mansour,  N.N.:  A  comparison  of  tur-
            bulence  models  in  computing  multielement  airfoil  flows,  AIAA  Paper  No.  94-0291,
            1994.
            Baldwin,  B.  and  Barth,  T.:  A  One-Equation  Turbulence  Transport  Model  for  High
            Reynolds  Number  Wall-Bounded  Flows,  NASA  TM  102847, Aug.  1990.
            Durbin,  P. A.,  Mansour,  N. N.,  and  Yang,  Z.:  Eddy  viscosity  Transport  Model  for
            Turbulent  Flow, to  appear  in  Physics  of  Fluids.
   355   356   357   358   359   360   361   362   363   364   365