Page 237 - Computational Modeling in Biomedical Engineering and Medical Physics
P. 237

226   Computational Modeling in Biomedical Engineering and Medical Physics





















                Figure 7.3 Geometric characteristics of the elementary circular turn of a stimulating coil (Morega, 2000).
                (A) α 5 0, theturnisinthe (xOy, z 5 0) plane. (B) The turn can rotate by 0 # α # π/2, with A as a fix
                point.

                   From the geometry shown in Fig. 7.3, the equations connecting the variables of the
                geometry described in Fig. 7.2 to the new variables (angles α and ϕ)are givenasfollows:

                                                      p ffiffiffi
                                             OA 5 r    2 2 1 ;                        ð7:9aÞ


                                     r    p ffiffiffi
                               x 0 5 p ffiffiffi  2 2 1 1 cos α 1 sin ϕ 2 cos α cos ϕ ;     ð7:9bÞ
                                      2

                                     r    p ffiffiffi
                               y 0 5 p ffiffiffi  2 2 1 1 cos α 2 sin ϕ 2 cos α cos ϕ ;     ð7:9cÞ
                                      2


                                           z 0 5 r sin α 1 2 cos ϕð  Þ:               ð7:9dÞ

                  dl 5 dl x i 1 dl y j 1 dl z k 5 dx 0 i 1 dy 0 j 1 dz 0 k
                    2                                                           3
                      r                      r                                        ð7:9eÞ
                  5 p cos ϕ 1 cos α sin ϕð  Þi 1 p ffiffiffi 2cos ϕ 1 cos α sin ϕð  Þj 1 r sin α sin ϕ k dϕ:
                    4
                                                                                5
                       ffiffiffi
                       2                      2
                   With the new variables, Eq. (7.8) becomes
                       !        (
                           μ di  x 2 x 0 cosϕ 1 cosαsinϕ
                    @E x    0
                 d       5     r           p ffiffiffi
                    @x     4π dt   R 3       2
                                                                                      ð7:10Þ
                             "                         !                #      )
                                    2       2                    2
                                                                 ð
                              ð x2x 0 Þ 2 y2y 0 Þ  z 2 z 0  ð x2x 0 Þ z 2 z 0 Þ
                                       ð
                           1                   1 1       1               sinαsinϕ  dϕ;
                                     ρ 4            R          ρ R  3
                                                                2
   232   233   234   235   236   237   238   239   240   241   242