Page 160 - Computational Retinal Image Analysis
P. 160

154    CHAPTER 8  Image quality assessment




                          [30]  M. Lalonde, L. Gagnon, M.-C. Boucher, Automatic visual quality assessment in optical
                             fundus images, Proc Vis Interface 32 (2001).
                          [31]  H.  Bartling,  P.  Wanger,  L.  Martin,  Automated  quality  evaluation  of  digital  fundus
                             photographs, Acta Ophthalmol. 87 (2009) 643–647.
                          [32]  H. Davis, S. Russell, E. Barriga, M. Abramoff, P. Soliz, Vision-based, real-time retinal
                             image quality assessment, in: 2009 22nd IEEE International Symposium on Computer-
                             Based Medical Systems, 2009, pp. 1–6.
                          [33]  A.D. Fleming, S. Philip, K.A. Goatman, J.A. Olson, P.F. Sharp, Automated assessment
                             of diabetic retinal image quality based on clarity and field definition, Invest. Ophthalmol.
                             Vis. Sci. 47 (2006) 1120–1125.
                          [34]  A. Hunter, J.A. Lowell, M. Habib, B. Ryder, A. Basu, D. Steel, An automated retinal
                             image quality grading algorithm, in: 2011 Annual International Conference of the IEEE
                             Engineering in Medicine and Biology Society, 2011, pp. 5955–5958.
                          [35]  J. Lowell, A. Hunter, M. Habib, D. Steel, Automated quantification of fundus image
                             quality, in: Proceedings of the 3rd European Medical and Biological Engineering
                             Conference, 2005, p. 1618.
                          [36]  M.  Niemeijer, M.  Abramoff, B.  Vanginneken, Image structure clustering for image
                             quality verification of color retina images in diabetic retinopathy screening, Med. Image
                             Anal. 10 (2006) 888–898.
                          [37]  L. Giancardo, M.D. Abramoff, E. Chaum, T.P. Karnowski, F. Meriaudeau, K.W. Tobin,
                             Elliptical local vessel density: a fast and robust quality metric for retinal images, in: 2008
                             30th Annual International Conference of the IEEE Engineering in Medicine and Biology
                             Society, 2008, pp. 3534–3537.
                          [38]  J. Paulus, J. Meier, R. Bock, J. Hornegger, G. Michelson, Automated quality assessment
                             of retinal fundus photos, Int. J. Comput. Assist. Radiol. Surg. 5 (2010) 557–564.
                          [39]  L. Abdel-Hamid, A. El-Rafei, S. El-Ramly, G. Michelson, Performance dependency of
                             retinal image quality assessment algorithms on image resolution: analyses and solutions,
                             Signal Image Video Process. 12 (2018) 9–16.
                          [40]  D. Mahapatra, P.K. Roy, S. Sedai, R. Garnavi, Retinal image quality classification using
                             saliency maps and CNNs, in: International Workshop on Machine Learning in Medical
                             Imaging, Springer, 2016, pp. 172–179.
                          [41]  J. Sun, C. Wan, J. Cheng, F. Yu, J. Liu, Retinal image quality classification using fine-
                             tuned CNN, in: Fetal, Infant and Ophthalmic Medical Image Analysis, Springer, 2017,
                             pp. 126–133.
                          [42]  DRIVE:  Digital Retinal  Images for Vessel Extraction,  http://www.isi.uu.nl/Research/
                             Databases/DRIVE/, 2018 (Accessed August 15, 2018).
                          [43]  Retinopathy Online Challenge,  http://webeye.ophth.uiowa.edu/ROC/, 2018 (Accessed
                             August 15, 2018).
                          [44]  The STARE Project,  http://cecas.clemson.edu/~ahoover/stare/ (Accessed  August 15,
                             2018).
                          [45]  M.D. Abramoff, M.S. Suttorp-Schulten, Web-based screening for diabetic retinopathy
                             in a primary care population: the EyeCheck project, Telemed. J. E Health 11 (2005)
                             668–674.
                          [46]  Kaggle: Your Home for Data Science, https://www.kaggle.com/, 2018 (Accessed August
                             7, 2018).
                          [47]  T. Kohler, A. Budai, M.F. Kraus, J. Odstrcilik, G. Michelson, J. Hornegger, Automatic
                             no-reference quality assessment for retinal fundus images using vessel segmentation, in:
   155   156   157   158   159   160   161   162   163   164   165