Page 160 - Computational Retinal Image Analysis
P. 160
154 CHAPTER 8 Image quality assessment
[30] M. Lalonde, L. Gagnon, M.-C. Boucher, Automatic visual quality assessment in optical
fundus images, Proc Vis Interface 32 (2001).
[31] H. Bartling, P. Wanger, L. Martin, Automated quality evaluation of digital fundus
photographs, Acta Ophthalmol. 87 (2009) 643–647.
[32] H. Davis, S. Russell, E. Barriga, M. Abramoff, P. Soliz, Vision-based, real-time retinal
image quality assessment, in: 2009 22nd IEEE International Symposium on Computer-
Based Medical Systems, 2009, pp. 1–6.
[33] A.D. Fleming, S. Philip, K.A. Goatman, J.A. Olson, P.F. Sharp, Automated assessment
of diabetic retinal image quality based on clarity and field definition, Invest. Ophthalmol.
Vis. Sci. 47 (2006) 1120–1125.
[34] A. Hunter, J.A. Lowell, M. Habib, B. Ryder, A. Basu, D. Steel, An automated retinal
image quality grading algorithm, in: 2011 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, 2011, pp. 5955–5958.
[35] J. Lowell, A. Hunter, M. Habib, D. Steel, Automated quantification of fundus image
quality, in: Proceedings of the 3rd European Medical and Biological Engineering
Conference, 2005, p. 1618.
[36] M. Niemeijer, M. Abramoff, B. Vanginneken, Image structure clustering for image
quality verification of color retina images in diabetic retinopathy screening, Med. Image
Anal. 10 (2006) 888–898.
[37] L. Giancardo, M.D. Abramoff, E. Chaum, T.P. Karnowski, F. Meriaudeau, K.W. Tobin,
Elliptical local vessel density: a fast and robust quality metric for retinal images, in: 2008
30th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, 2008, pp. 3534–3537.
[38] J. Paulus, J. Meier, R. Bock, J. Hornegger, G. Michelson, Automated quality assessment
of retinal fundus photos, Int. J. Comput. Assist. Radiol. Surg. 5 (2010) 557–564.
[39] L. Abdel-Hamid, A. El-Rafei, S. El-Ramly, G. Michelson, Performance dependency of
retinal image quality assessment algorithms on image resolution: analyses and solutions,
Signal Image Video Process. 12 (2018) 9–16.
[40] D. Mahapatra, P.K. Roy, S. Sedai, R. Garnavi, Retinal image quality classification using
saliency maps and CNNs, in: International Workshop on Machine Learning in Medical
Imaging, Springer, 2016, pp. 172–179.
[41] J. Sun, C. Wan, J. Cheng, F. Yu, J. Liu, Retinal image quality classification using fine-
tuned CNN, in: Fetal, Infant and Ophthalmic Medical Image Analysis, Springer, 2017,
pp. 126–133.
[42] DRIVE: Digital Retinal Images for Vessel Extraction, http://www.isi.uu.nl/Research/
Databases/DRIVE/, 2018 (Accessed August 15, 2018).
[43] Retinopathy Online Challenge, http://webeye.ophth.uiowa.edu/ROC/, 2018 (Accessed
August 15, 2018).
[44] The STARE Project, http://cecas.clemson.edu/~ahoover/stare/ (Accessed August 15,
2018).
[45] M.D. Abramoff, M.S. Suttorp-Schulten, Web-based screening for diabetic retinopathy
in a primary care population: the EyeCheck project, Telemed. J. E Health 11 (2005)
668–674.
[46] Kaggle: Your Home for Data Science, https://www.kaggle.com/, 2018 (Accessed August
7, 2018).
[47] T. Kohler, A. Budai, M.F. Kraus, J. Odstrcilik, G. Michelson, J. Hornegger, Automatic
no-reference quality assessment for retinal fundus images using vessel segmentation, in: