Page 159 - Computational Retinal Image Analysis
P. 159
References 153
[14] A.B. Hansen, N.V. Hartvig, M.S. Jensen, K. Borch-Johnsen, H. Lund-Andersen,
M. Larsen, Diabetic retinopathy screening using digital non-mydriatic fundus photography
and automated image analysis, Acta Ophthalmol. Scand. 82 (2004) 666–672.
[15] M.D. Abràmoff, J.C. Folk, D.P. Han, J.D. Walker, D.F. Williams, S.R. Russell, et al.,
Automated analysis of retinal images for detection of referable diabetic retinopathy,
JAMA Ophthalmol. 131 (2013) 351–357.
[16] V. Gulshan, L. Peng, M. Coram, M.C. Stumpe, D. Wu, A. Narayanaswamy, et al.,
Development and validation of a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs, JAMA 316 (2016) 2402–2410.
[17] E. Decencière, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone, et al., Feedback
on a publicly distributed image database: the Messidor database, Image Anal. Stereol. 33
(2014) 231–234.
[18] Diabetic Retinopathy Detection, https://www.kaggle.com/c/diabetic-retinopathy-
detection, 2018 (Accessed August 6, 2018).
[19] C. Swanson, K.D. Cocker, K.H. Parker, M.J. Moseley, A.R. Fielder, Semiautomated
computer analysis of vessel growth in preterm infants without and with ROP, Br. J.
Ophthalmol. 87 (2003) 1474–1477.
[20] K. Johnston, C. Kennedy, I. Murdoch, P. Taylor, C. Cook, The cost-effectiveness of
technology transfer using telemedicine, Health Policy Plan. 19 (2004) 302–309.
[21] J. Choremis, D.R. Chow, Use of telemedicine in screening for diabetic retinopathy, Can.
J. Ophthalmol. 38 (2003) 575–579.
[22] K.G. Yen, D. Hess, B. Burke, R.A. Johnson, W.J. Feuer, J.T. Flynn, Telephotoscreening
to detect retinopathy of prematurity: preliminary study of the optimum time to employ
digital fundus camera imaging to detect ROP, J. Am. Assoc. Pediatr. Ophthalmol.
Strabismus 6 (2002) 64–70.
[23] L. Giancardo, F. Meriaudeau, T.P. Karnowski, E. Chaum, K. Tobin, Quality assessment
of retinal fundus images using elliptical local vessel density, in: New Developments in
Biomedical Engineering, InTech, 2010.
[24] Home | UK Biobank Eye and Vision Consortium, http://www.ukbiobankeyeconsortium.
org.uk/, 2018 (Accessed August 15, 2018).
[25] C.G. Owen, A.R. Rudnicka, R.A. Welikala, M.M. Fraz, S.A. Barman, R. Luben, et al.,
Retinal vasculometry associations with cardiometabolic risk factors in the European
prospective investigation of Cancer Norfolk study, Ophthalmology (2018), https://doi.
org/10.1016/j.ophtha.2018.07.022.
[26] T.J. MacGillivray, J.R. Cameron, Q. Zhang, A. El-Medany, C. Mulholland, Z. Sheng,
et al., Suitability of UK biobank retinal images for automatic analysis of morphometric
properties of the vasculature, PLoS One 10 (2015) e0127914.
[27] T.J. MacGillivray, E. Trucco, J.R. Cameron, B. Dhillon, J.G. Houston, E.J.R. van
Beek, Retinal imaging as a source of biomarkers for diagnosis, characterization
and prognosis of chronic illness or long-term conditions, Br. J. Radiol. 87 (2014)
20130832.
[28] R. Poplin, A.V. Varadarajan, K. Blumer, Y. Liu, M.V. McConnell, G.S. Corrado, et al.,
Prediction of cardiovascular risk factors from retinal fundus photographs via deep
learning, Nat. Biomed. Eng. 2 (2018) 158–164.
[29] S.C. Lee, Y. Wang, Automatic retinal image quality assessment and enhancement,
in: Medical Imaging 1999: Image Processing, International Society for Optics and
Photonics, 1999, pp. 1581–1591.