Page 159 - Computational Retinal Image Analysis
P. 159

References  153




                   [14]  A.B.  Hansen, N.V.  Hartvig, M.S.  Jensen, K.  Borch-Johnsen, H.  Lund-Andersen,
                      M. Larsen, Diabetic retinopathy screening using digital non-mydriatic fundus photography
                      and automated image analysis, Acta Ophthalmol. Scand. 82 (2004) 666–672.
                   [15]  M.D. Abràmoff, J.C. Folk, D.P. Han, J.D. Walker, D.F. Williams, S.R. Russell, et al.,
                      Automated analysis of retinal images for detection of referable diabetic retinopathy,
                      JAMA Ophthalmol. 131 (2013) 351–357.
                   [16]  V.  Gulshan, L.  Peng, M.  Coram, M.C.  Stumpe, D.  Wu, A.  Narayanaswamy, et  al.,
                      Development and validation of a deep learning algorithm for detection of diabetic
                      retinopathy in retinal fundus photographs, JAMA 316 (2016) 2402–2410.
                   [17]  E. Decencière, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone, et al., Feedback
                      on a publicly distributed image database: the Messidor database, Image Anal. Stereol. 33
                      (2014) 231–234.
                   [18]  Diabetic Retinopathy Detection,  https://www.kaggle.com/c/diabetic-retinopathy-
                      detection, 2018 (Accessed August 6, 2018).
                   [19]  C.  Swanson, K.D.  Cocker, K.H.  Parker, M.J.  Moseley, A.R.  Fielder, Semiautomated
                      computer analysis of vessel growth in preterm infants without and with ROP, Br. J.
                      Ophthalmol. 87 (2003) 1474–1477.
                   [20]  K.  Johnston, C.  Kennedy, I.  Murdoch, P.  Taylor, C.  Cook, The cost-effectiveness of
                      technology transfer using telemedicine, Health Policy Plan. 19 (2004) 302–309.
                   [21]  J. Choremis, D.R. Chow, Use of telemedicine in screening for diabetic retinopathy, Can.
                      J. Ophthalmol. 38 (2003) 575–579.
                   [22]  K.G. Yen, D. Hess, B. Burke, R.A. Johnson, W.J. Feuer, J.T. Flynn, Telephotoscreening
                      to detect retinopathy of prematurity: preliminary study of the optimum time to employ
                      digital fundus camera imaging to detect ROP, J.  Am.  Assoc. Pediatr. Ophthalmol.
                      Strabismus 6 (2002) 64–70.
                   [23]  L. Giancardo, F. Meriaudeau, T.P. Karnowski, E. Chaum, K. Tobin, Quality assessment
                      of retinal fundus images using elliptical local vessel density, in: New Developments in
                      Biomedical Engineering, InTech, 2010.
                   [24]  Home | UK Biobank Eye and Vision Consortium, http://www.ukbiobankeyeconsortium.
                      org.uk/, 2018 (Accessed August 15, 2018).
                   [25]  C.G. Owen, A.R. Rudnicka, R.A. Welikala, M.M. Fraz, S.A. Barman, R. Luben, et al.,
                      Retinal vasculometry associations with cardiometabolic risk factors in the European
                      prospective investigation of Cancer Norfolk study, Ophthalmology (2018), https://doi.
                      org/10.1016/j.ophtha.2018.07.022.
                   [26]  T.J. MacGillivray, J.R. Cameron, Q. Zhang, A. El-Medany, C. Mulholland, Z. Sheng,
                      et al., Suitability of UK biobank retinal images for automatic analysis of morphometric
                      properties of the vasculature, PLoS One 10 (2015) e0127914.
                    [27]  T.J.  MacGillivray, E.  Trucco, J.R.  Cameron, B.  Dhillon, J.G.  Houston, E.J.R.  van
                      Beek, Retinal imaging as a source of biomarkers for  diagnosis, characterization
                      and prognosis of chronic illness or long-term conditions, Br. J. Radiol. 87 (2014)
                      20130832.
                   [28]  R. Poplin, A.V. Varadarajan, K. Blumer, Y. Liu, M.V. McConnell, G.S. Corrado, et al.,
                      Prediction of cardiovascular risk factors  from retinal fundus photographs via deep
                      learning, Nat. Biomed. Eng. 2 (2018) 158–164.
                   [29]  S.C.  Lee,  Y.  Wang,  Automatic retinal  image quality assessment and enhancement,
                      in: Medical Imaging 1999: Image Processing, International Society for Optics and
                      Photonics, 1999, pp. 1581–1591.
   154   155   156   157   158   159   160   161   162   163   164