Page 158 - Computational Retinal Image Analysis
P. 158

152    CHAPTER 8  Image quality assessment




                         Algorithms based on information fusion, structural image parameter analysis, and
                         machine learning (including deep learning) were included.
                            Image quality assessment algorithms will play a large part in the future development
                         of analysis systems. Given the emergence of opportunities for the application of
                         deep learning to generate highly automated analysis systems, achieving consistent
                         and high image quality ensures maximum performance of these systems. Real-time
                         feedback of image quality assessment embedded in image capture protocols is likely
                         to become an integral feature of future automated retinal image analysis systems.



                           References

                           [1]  H.R. Sheikh, M.F. Sabir, A.C. Bovik, A statistical evaluation of recent full reference
                             image quality assessment algorithms, IEEE Trans. Image Process. 15 (2006) 3440–3451.
                           [2]  D.B. Usher, M. Himaga, M.J. Dumskyj, J.F. Boyce, Automated assessment of digital
                             fundus image quality using detected vessel area, in: Proceedings of Medical Image
                             Understanding and Analysis, Citeseer, 2003, pp. 81–84.
                           [3]  J.M. Pires Dias, C.M. Oliveira, L.A. da Silva Cruz, Retinal image quality assessment
                             using generic image quality indicators, Inf. Fusion 19 (2014) 73–90.
                           [4]  M. Foracchia, E. Grisan, A. Ruggeri, Luminosity and contrast normalization in retinal
                             images, Med. Image Anal. 9 (2005) 179–190.
                           [5]  E. Grisan, A. Giani, E. Ceseracciu, A. Ruggeri, Model-based illumination correction in
                             retinal images, in: 3rd IEEE International Symposium on Biomedical Imaging: Nano to
                             Macro, 2006, 2006, pp. 984–987.
                           [6]  R.A.  Welikala, M.M.  Fraz, P.J.  Foster, P.H.  Whincup,  A.R.  Rudnicka, C.G.  Owen,
                             et  al.,  Automated retinal image quality assessment on the UK biobank dataset for
                             epidemiological studies, Comput. Biol. Med. 71 (2016) 67–76.
                           [7]  N. Patton, T.M. Aslam, T. MacGillivray, I.J. Deary, B. Dhillon, R.H. Eikelboom, et al., Retinal
                             image analysis: concepts, applications and potential, Prog. Retin. Eye Res. 25 (2006) 99–127.
                           [8]  A.  Tufail, C.  Rudisill, C.  Egan, V.V.  Kapetanakis, S.  Salas-Vega, C.G.  Owen, et  al.,
                             Automated diabetic retinopathy image assessment software: diagnostic accuracy and
                             cost-effectiveness compared with human graders, Ophthalmology 124 (2017) 343–351.
                           [9]  J. Mason, National screening for diabetic retinopathy: clear vision needed, Diabet. Med.
                             20 (2003) 959–961.
                          [10]  Diabetic Eye Screening: Programme Overview, https://www.gov.uk/guidance/diabetic-
                             eye-screening-programme-overview, (Accessed August 13, 2018).
                          [11]  M.D. Abràmoff, M. Niemeijer, M.S.A. Suttorp-Schulten, M.A. Viergever, S.R. Russell,
                             B. van Ginneken, Evaluation of a system for automatic detection of diabetic retinopathy
                             from color fundus photographs in a large population of patients with diabetes, Diabetes
                             Care 31 (2008) 193–198.
                          [12]  Pathway for Adequate/Inadequate Images and Where Images can not be taken, https://
                             assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/
                             file/403107/Pathway_for_adequate_inadequate_images_and_where_images_cannot_
                             be_taken_v1_4_10Apr13.pdf (Accessed August 14, 2018).
                          [13]  P.H.  Scanlon,  The English National Screening Programme for diabetic retinopathy
                             2003–2016, Acta Diabetol. 54 (2017) 515–525.
   153   154   155   156   157   158   159   160   161   162   163