Page 161 - Computational Retinal Image Analysis
P. 161

References  155




                      Proceedings of the 26th IEEE International Symposium on Computer-Based Medical
                      Systems, IEEE, Porto, Portugal, 2013, pp. 95–100.
                   [48]  U. Şevik, C. Köse, T. Berber, H. Erdöl, Identification of suitable fundus images using
                      automated quality assessment methods, J. Biomed. Opt. 19 (2014) 046006.
                   [49]  R. Pires, H.F. Jelinek, J. Wainer, A. Rocha, Retinal image quality analysis for automatic
                      diabetic  retinopathy  detection,  in: 2012  25th SIBGRAPI  Conference  on Graphics,
                      Patterns and Images, IEEE, Ouro Preto, Brazil, 2012, pp. 229–236.
                   [50]  M. Niemeijer, M.D. Abramoff, B. van Ginneken, Segmentation of the optic disc, macula
                      and vascular arch in fundus photographs, IEEE Trans. Med. Imaging 26 (2007) 116–127.
                   [51]  M.J. Swain, D.H. Ballard, Color indexing, Int. J. Comput. Vis. 7 (1991) 11–32.
                   [52]  M.M. Fraz, R.A. Welikala, A.R. Rudnicka, C.G. Owen, D.P. Strachan, S.A. Barman,
                      QUARTZ:  quantitative  analysis  of  retinal  vessel  topology  and  size—an  automated
                      system for quantification of retinal vessels morphology, Expert Syst. Appl. 42 (2015)
                      7221–7234.
                   [53]  R.A. Welikala, M.M. Fraz, M.M. Habib, S. Daniel-Tong, M. Yates, P.J. Foster, et al.,
                      Automated quantification of retinal vessel morphometry in the UK  biobank cohort,
                      in: 2017 Seventh International Conference on Image Processing  Theory,  Tools and
                      Applications (IPTA), 2017, pp. 1–6.
                   [54]  C.  Szegedy,  V.  Vanhoucke, S.  Ioffe, J.  Shlens, Z.  Wojna, Rethinking the Inception
                      Architecture for Computer Vision, ArXiv151200567 Cs, http://arxiv.org/abs/1512.00567,
                      2015 (Accessed August 15, 2018).
                   [55]  L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention for rapid scene
                      analysis, IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 1254–1259.
                   [56]  P. Tewarie, L. Balk, F. Costello, A. Green, R. Martin, S. Schippling, et al., The OSCAR-IB
                      consensus criteria for retinal OCT quality assessment, PLoS One 7 (2012) e34823.
                   [57]  A. Perez-Rovira, T. MacGillivray, E. Trucco, K.S. Chin, K. Zutis, C. Lupascu, et al.,
                      VAMPIRE: vessel assessment and measurement platform for images of the REtina, in:
                      2011 Annual International Conference of the IEEE Engineering in Medicine and Biology
                      Society, IEEE, Boston, MA, 2011, pp. 3391–3394.
                   [58]  C.G. Owen, A.R. Rudnicka, C.M. Nightingale, R. Mullen, S.A. Barman, N. Sattar, et al.,
                      Retinal arteriolar tortuosity and cardiovascular risk factors in a multi-ethnic population
                      study of 10-year-old children; the child heart and health study in England (CHASE),
                      Arterioscler. Thromb. Vasc. Biol. 31 (2011) 1933–1938.
                   [59]  C.  Swanson, K.D.  Cocker, K.H.  Parker, M.J.  Moseley, A.R.  Fielder, Semiautomated
                      computer analysis of vessel growth in preterm infants without and with ROP, Br. J.
                      Ophthalmol. 87 (2003) 1474–1477.
                   [60]  A. Toniappa, S.A. Barman, E. Corvee, M.J. Moseley, K. Cocker, A.R. Fielder, Image
                      quality assessment in retinal images of premature infants taken with RetCam 120 digital
                      fundus camera, Imaging Sci. J. 53 (2005) 51–59.
   156   157   158   159   160   161   162   163   164   165   166