Page 161 - Computational Retinal Image Analysis
P. 161
References 155
Proceedings of the 26th IEEE International Symposium on Computer-Based Medical
Systems, IEEE, Porto, Portugal, 2013, pp. 95–100.
[48] U. Şevik, C. Köse, T. Berber, H. Erdöl, Identification of suitable fundus images using
automated quality assessment methods, J. Biomed. Opt. 19 (2014) 046006.
[49] R. Pires, H.F. Jelinek, J. Wainer, A. Rocha, Retinal image quality analysis for automatic
diabetic retinopathy detection, in: 2012 25th SIBGRAPI Conference on Graphics,
Patterns and Images, IEEE, Ouro Preto, Brazil, 2012, pp. 229–236.
[50] M. Niemeijer, M.D. Abramoff, B. van Ginneken, Segmentation of the optic disc, macula
and vascular arch in fundus photographs, IEEE Trans. Med. Imaging 26 (2007) 116–127.
[51] M.J. Swain, D.H. Ballard, Color indexing, Int. J. Comput. Vis. 7 (1991) 11–32.
[52] M.M. Fraz, R.A. Welikala, A.R. Rudnicka, C.G. Owen, D.P. Strachan, S.A. Barman,
QUARTZ: quantitative analysis of retinal vessel topology and size—an automated
system for quantification of retinal vessels morphology, Expert Syst. Appl. 42 (2015)
7221–7234.
[53] R.A. Welikala, M.M. Fraz, M.M. Habib, S. Daniel-Tong, M. Yates, P.J. Foster, et al.,
Automated quantification of retinal vessel morphometry in the UK biobank cohort,
in: 2017 Seventh International Conference on Image Processing Theory, Tools and
Applications (IPTA), 2017, pp. 1–6.
[54] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the Inception
Architecture for Computer Vision, ArXiv151200567 Cs, http://arxiv.org/abs/1512.00567,
2015 (Accessed August 15, 2018).
[55] L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention for rapid scene
analysis, IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 1254–1259.
[56] P. Tewarie, L. Balk, F. Costello, A. Green, R. Martin, S. Schippling, et al., The OSCAR-IB
consensus criteria for retinal OCT quality assessment, PLoS One 7 (2012) e34823.
[57] A. Perez-Rovira, T. MacGillivray, E. Trucco, K.S. Chin, K. Zutis, C. Lupascu, et al.,
VAMPIRE: vessel assessment and measurement platform for images of the REtina, in:
2011 Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, IEEE, Boston, MA, 2011, pp. 3391–3394.
[58] C.G. Owen, A.R. Rudnicka, C.M. Nightingale, R. Mullen, S.A. Barman, N. Sattar, et al.,
Retinal arteriolar tortuosity and cardiovascular risk factors in a multi-ethnic population
study of 10-year-old children; the child heart and health study in England (CHASE),
Arterioscler. Thromb. Vasc. Biol. 31 (2011) 1933–1938.
[59] C. Swanson, K.D. Cocker, K.H. Parker, M.J. Moseley, A.R. Fielder, Semiautomated
computer analysis of vessel growth in preterm infants without and with ROP, Br. J.
Ophthalmol. 87 (2003) 1474–1477.
[60] A. Toniappa, S.A. Barman, E. Corvee, M.J. Moseley, K. Cocker, A.R. Fielder, Image
quality assessment in retinal images of premature infants taken with RetCam 120 digital
fundus camera, Imaging Sci. J. 53 (2005) 51–59.