Page 245 - Computational Retinal Image Analysis
P. 245

242    CHAPTER 12  Diabetic retinopathy and maculopathy lesions




                             1273–1284.
                          [47]  J.I. Orlando, E. Prokofyeva, M. del Fresno, M.B. Blaschko, An ensemble deep learning
                             based approach for red lesion detection in fundus images, Comput. Methods Programs
                             Biomed. 153 (2018) 115–127.
                          [48]  P. Chudzik, S. Majumdar, F. Caliva, B. Al-Diri, A. Hunter, Exudate segmentation using
                             fully convolutional neural networks and inception modules, Medical Imaging 2018:
                             Image Processing, vol. 10574, 2018, p. 1057430.
                          [49]  P. Chudzik, S. Majumdar, F. Caliva, B. Al-Diri, A. Hunter, Microaneurysm detection
                             using deep learning and interleaved freezing, Medical Imaging 2018: Image Processing,
                             vol. 10574, 2018, p. 105741I.
                          [50]  P. Chudzik, B. Al-Diri, F. Calivá, G. Ometto, A. Hunter, Exudates segmentation using
                             fully convolutional neural network and auxiliary codebook, 40th Annual International
                             Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE,
                             2018, pp. 770–773.
                          [51]  L. Dai, R. Fang, H. Li, X. Hou, B. Sheng, Q. Wu, W. Jia, Clinical report guided retinal
                             microaneurysm detection with multi-sieving deep learning, IEEE Trans. Med. Imaging
                             37 (5) (2018) 1149–1161.
                          [52]  C.  Agurto,  V.  Murray, E.  Barriga, S.  Murillo, M.  Pattichis, H.  Davis, S.  Russell,
                             M.  Abràmoff, P.  Soliz, Multiscale  AM-FM methods for diabetic retinopathy lesion
                             detection, IEEE Trans. Med. Imaging 29 (2) (2010) 502–512.
                          [53]  M. Javidi, H.-R. Pourreza, A. Harati, Vessel segmentation and microaneurysm detection
                             using discriminative dictionary learning and sparse representation, Comput. Methods
                             Programs Biomed. 139 (2017) 93–108.
                          [54]  G.  Quellec, S.R.  Russell, M.D.  Abràmoff, Optimal filter framework for automated,
                             instantaneous detection of lesions in retinal images, IEEE Trans. Med. Imaging 30 (2)
                             (2011) 523–533.
                          [55]  C.  Köse, U.  Şevik, C.  İkibaş, H.  Erdöl, Simple methods for segmentation and
                             measurement of diabetic retinopathy lesions in retinal fundus images, Comput. Methods
                             Prog. Biomed. 107 (2) (2012) 274–293.
                          [56]  I.N. Figueiredo, S. Kumar, C.M. Oliveira, J.D. Ramos, B. Engquist, Automated lesion
                             detectors in retinal fundus images, Comput. Biol. Med. 66 (2015) 47–65.
                          [57]  E. Decencière, G. Cazuguel, X. Zhang, G. Thibault, J.-C. Klein, F. Meyer, B. Marcotegui,
                             G. Quellec, M. Lamard, R. Danno, D. Elie, P. Massin, Z. Viktor, A. Erginay, B. Laÿ,
                             A.  Chabouis,  TeleOphta: machine learning and image processing methods for
                             teleophthalmology, IRBM 34 (2) (2013) 196–203.
                          [58]  E.  Decencière, X.  Zhang, G.  Cazuguel, B.  Lay, B.  Cochener, C.  Trone, P.  Gain,
                             R. Ordonez, P. Massin, A. Erginay, B. Charton, J.-C. Klein, Feedback on a publicly
                             distributed image database: the Messidor database, Image Anal. Stereol. 33 (3) (2014)
                             231–234.
                          [59]  T.  Kauppi,  V.  Kalesnykiene, J.-K.  Kamarainen, L.  Lensu, I.  Sorri,  A.  Raninen,
                             R.  Voutilainen, H.  Uusitalo, H.  Kälviäinen, J.  Pietilä,  The DIARETDB1 diabetic
                             retinopathy database and evaluation protocol, BMVC, 2007, pp. 1–10.
                          [60]  B. Harangi, I. Lazar, A. Hajdu, Automatic exudate detection using active contour model
                             and regionwise classification, Annual International Conference of the IEEE Engineering
                             in Medicine and Biology Society, IEEE, 2012, pp. 5951–5954.
                          [61]  L. Giancardo, F. Meriaudeau, T.P. Karnowski, Y. Li, S. Garg, K.W. Tobin Jr, E. Chaum,
                             Exudate-based diabetic macular edema detection in fundus images using publicly
                             available datasets, Med. Image Anal. 16 (1) (2012) 216–226.
   240   241   242   243   244   245   246   247   248   249   250