Page 106 - Control Theory in Biomedical Engineering
P. 106

Modeling and optimal control of cancer-immune system  93


              characterization together with the optimal control. Therefore, the optimal
              system is given as follows:
                          ∗
                                 ∗
              dE ∗      ρE ðt τÞT ðt τÞ                               u ∗
                                                  ∗
                                           ∗
                    ∗
                                                                         ∗
                                                            ∗
                 ¼ w σ +                μE ðt τÞT ðt τÞ δE  a 1 ð1 e   ÞE ,
                               ∗
              dt           η +T ðt τÞ
               dT ∗                                       u ∗
                                   ∗
                                              ∗ ∗
                                                             ∗
                       ∗
                              ∗
                                       ∗
                  ¼ r 2 T ð1 βT Þ μE ðtÞT  c 1 N T  a 2 ð1 e  ÞT ,
                dt
               dN ∗                               u ∗
                                      ∗
                                                      ∗
                               ∗
                       ∗
                                        ∗
                  ¼ r 3 N ð1 β N Þ c 2 T N  a 3 ð1 e  ÞN ,
                             2
                dt
               du ∗
                           ∗
                     ∗
                   ¼ v  d 1 u ,
                dt

                                       u ∗                              ρT ∗
                                                                    ∗
                                                  ∗
               0
              λ ðtÞ¼ 1+ λ 1 ðtÞ δ +a 1 ð1 e  Þ + λ 2 ðtÞnT + λ 1 ðt+ τÞχ  μT    ,
               1                                            ½0, t f  τŠ
                                                                       η +T ∗

                                              ∗
                                        ∗
                                   ∗
               0
                                                         Þ + λ 3 c 2 N
              λ ðtÞ¼ 1+ λ 2  r 2 +2r 2 βT +nE +c 1 N +a 2 ð1 e  u ∗    ∗
               2
                                  "                   #
                                      ∗ ∗
                                    ρE T     ρE ∗
                    + χ ½0, t f  τŠ 1 ðt+ τÞ     + μE ∗  ,
                           λ
                                       ∗ 2
                                   ðη +T Þ  η +T ∗
                             
                         u ∗
                                             ∗
                                       ∗
                         ∗
               0
              λ ðtÞ¼ λ 2 c 1 T  λ 3 r 3  2r 3 β N  c 2 T  a 3 ð1 e  Þ  γ,
                                     2
               3
                                            ∗
               0
                                                          ∗
                                ∗
              λ ðtÞ¼ λ 1 ðtÞa 1 e  u ∗ E + λ 2 ðtÞa 2 e  u ∗ T + λ 3 ðtÞa 3 e  u ∗ N + λ 4 ðtÞd 1 ,
               4

                              λ 4   ∗            λ 1 s 1
                 ∗
                v ¼ min v max ,  ,w ¼ min w max ,     :
                              B v                B w
                                        ∗
               ∗
                           ∗
              E ðθÞ¼ ψ ðθÞ,T ðθÞ¼ ψ ðθÞ,N ðθÞ¼ ψ ðθÞ,uðθÞ¼ ψ ðθÞ, θ ½ τ,0Š,
                     1
                                              3
                                                         4
                                  2
              λ i ðt f Þ¼ 0, i ¼f1,2,3,4g:                                 ð13Þ
                                                                            □
              4 Numerical simulations
              The numerical approximations of the OCP are carried out using forward
              and backward Euler methods. Starting with an initial guess for the value
              of the controls on the time interval [0, t f ], we solve the state system with
              control variables (3) using forward Euler’ scheme. Meanwhile, the adjoint
              system is solved using the solutions of the state system and the transversality
              conditions (9) backward in time. A Pontryagin-type maximum principle is
              derived, for retarded OCPs with delays in the state variable when the
              control system is subject to a mixed control state constraint, in order to
              minimize the cost of treatment, reduce the tumor cell load, and keep the
              number of normal cells greater than 75% of its carrying capacity; see the
              “Appendix” section for the Matlab program.
   101   102   103   104   105   106   107   108   109   110   111