Page 230 - Corrosion Engineering Principles and Practice
P. 230

204   C h a p t e r   6                R e c o g n i z i n g   t h e   F o r m s   o f   C o r r o s i o n    205


                      active metal to the  corrosive action of the atmosphere. Conditions
                      necessary for the occurrence of fretting are (1) the interface must be
                      under load, and (2) vibratory or oscillatory motion of small amplitude
                      must result in the surfaces striking or rubbing together. The results of
                      fretting are as follows:
                           1.  Metal loss in the area of contact
                           2.  Production of oxide debris
                           3.  Galling, seizing, fatiguing, or cracking of the metal


                 References
                        1.  Fontana MG, Greene ND. Corrosion Engineering. New York, N.Y.: McGraw Hill,
                         1967.
                        2.  Dillon CP. Forms of Corrosion: Recognition and Prevention. Houston, Tex: NACE
                         International, 1982.
                        3.  Speidel MO, Fourt PM. Stress corrosion cracking and hydrogen embrittlement
                         in industrial circumstances. In: Staehle RW, Hochmann J, McCright RD, Slater
                         JE, eds. Stess Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys.
                         Houston, Tex.: NACE International, 1977; 57–60.
                        4.  Techniques  for  Monitoring  Corrosion  and  Related  Parameters  in  Field
                         Applications. NACE 3T199. Houston, Tex.: NACE International, 1999.
                        5.  Lozev M, Grimmett B, Shell E, Spencer R. Evaluation of Methods for Detecting
                         and Monitoring of Corrosion and Fatigue Damage in Risers. Project No. 45891GTH.
                         Washington, Wash.: Minerals Management Service, U.S. Department of the
                         Interior, 2003.
                        6.  Malo JM, Salinas V, Uruchurtu J. Stray current corrosion causes gasoline pipe-
                         line failure. Materials Performance, 1994; 33: 63.
                        7.  Standard Guide for Examination and Evaluation of Pitting Corrosion. ASTM G46–94.
                         West Conshohocken, Pa.: American Society for Testing of Materials, 1999.
                        8.  Evans UR, Mears RB, Queneau PE. Corrosion probability and corrosion veloc-
                         ity. Engineering, 1933; 136: 689.
                        9.  Mears RB, Evans UR. The “probability” of corrosion. Transactions of the Faraday
                         Society, 1935; 31: 527–42.
                      10.  Gumbel EJ. Statistical Theory of Extreme Values and Some Practical Applications.
                         Mathematics  Series.  33.  Washington,  D.C.:  National  Bureau  of  Standards,
                         1954.
                      11.  Walton JC, Cragnolino G, Kalandros SK. A numerical model of crevice corro-
                         sion for passive and active metals. Corrosion, 1996; 38: 1–18.
                      12.  McArthur H. Corrosion Prediction and Prevention in Motor Vehicles. Chichester,
                         U.K.: Ellis Horwood, 1988.
                      13.  Baboian  R.  Automotive  Corrosion  and  Prevention.  Houston  Tex.:  NACE
                         International, 1991.
                      14.  Liss VM. Preventing corrosion under insulation. Chemical Engineering, 1987;
                         97–100.
                      15.  Ruggeri  RT,  Beck  TR. An  analysis  of  mass  transfer  in  filiform  corrosion.
                         Corrosion, 1983; 39: 452–65.
                      16.  Slabaugh WH, DeJager W, Hoover SE, Hutchinson LL. Filiform corrosion of
                         aluminum. Journal of Paint Technology, 1972; 44: 76–83.
                      17.  Roberge PR. Handbook of Corrosion Engineering. New York, N.Y.: McGraw-Hill,
                         2000.
                      18.  Hoxeng RB, Prutton CF. Electrochemical behavior of zinc and steel in aqueous
                         media. Corrosion, 1949; 5: 330–8.
                      19.  Haney EG. The zinc-steel potential reversal in cathodic protection. Materials
                         Performance, 1982; 21: 44–51.
   225   226   227   228   229   230   231   232   233   234   235