Page 280 - Corrosion Engineering Principles and Practice
P. 280
254 C h a p t e r 7 C o r r o s i o n F a i l u r e s , F a c t o r s , a n d C e l l s 255
References
1. Mears RB, Brown RH. Designing to prevent corrosion. Corrosion, 1947;
3: 97–120.
2. Hoar TP. Report of the Committee on Corrosion and Protection. London, U.K.:
Her Majesty’s Stationery Office, 1971.
3. Standard guide for applying statistics to analysis of corrosion data. In: Annual
Book of ASTM Standards. Philadelphia, Pa.: American Society for Testing of
Materials, 1999.
4. Postlethwaite J, Dobbin MH, Bergevin K. The role of oxygen mass transfer in
the erosion–corrosion of slurry pipelines. Corrosion, 1986; 42: 514–21.
5. Chexal B, Horowitz J, Dooley B, Millett P, Wood C, Jones R. Flow-Accelerated
Corrosion in Power Plants. Revision 1. EPRI TR-106611-R1. Palo Alto, Calif.:
Electric Power Research Institute, 1998.
6. Roberge PR. Corrosion Testing Made Easy: Erosion–Corrosion Testing. Houston,
Tex.: NACE International, 2004.
7. Dillon CP. Unusual Corrosion Problems in the Chemical Industry. St. Louis, Mo.:
Materials Technology Institute (MTI), 2000.
8. Dexter SC. Microbiologically influenced corrosion. In: Cramer DS, Covino BS,
eds. Vol. 13A: Corrosion: Fundamentals, Testing, and Protection. Metals Park, Ohio:
ASM International, 2003; 398–416.
9. Scott PJB. Expert consensus on MIC: Prevention and monitoring. Materials
Performance 2004; 43: 50–4.
10. Michalke C, Otis AK. Stray Currents from Electric Railways. New York, N.Y.:
McGraw-Hill, 1906.
11. Cowan RL, Staehle RW. The thermodynamics and electrode kinetic behavior
of nickel in acid solution in the temperature range 25° to 300°C. Journal of the
Electrochemical Society, 1971; 118: 557–68.
12. Staehle RW. Lifetime prediction of materials in environments. In: Revie RW, ed.
Uhlig's Corrosion Handbook. New York, N.Y.: Wiley-Interscience, 2000; 27–84.
13. Staehle RW. Environmental definition. In: Revie RW, Sastri VS, Ghali E, Piron
DL, Roberge PR, eds. Materials Performance Maintenance. New York, N.Y.:
Pergamon Press, 1991; 3–43.
14. Oldfield JW. Electrochemical theory of galvanic corrosion. In: Hack HP, ed.
Galvanic Corrosion. Philadelphia, Pa.: American Society for Testing of Materials,
1988; 5–22.
15. Peabody AW, Bianchetti RL. Peabody's Control of Pipeline Corrosion. 2nd edn.
Houston, Tex.: NACE International, 2001.
16. Dissimilar Metals. MIL-STD-889B(3): Army Research Laboratory, Aberdeen,
MD:1993.
17. Bell GEC, Schiff MJ, Wilson DF. Field observations and laboratory investigations
of thermogalvanic corrosion of copper tubing. CORROSION 97, Paper # 568.
Houston, Tex.: NACE International, 1997.
18. External Corrosion—Introduction to Chemistry and Control, 2nd. Report M27.
Denver, Colo.: American Water Works Association, 2004.
19. Miller D. Corrosion control on aging aircraft: What is being done? Materials
Performance 1990; 29: 10–1.
20. Komorowski JP, Krishnakumar S, Gould RW, Bellinger NC, Karpala F, Hageniers
OL. Double pass retroreflection for corrosion detection in aircraft structures.
Materials Evaluation 1996; 54: 80–6.
21. Beavers JA. Fundamentals of corrosion. In: Peabody AW, Bianchetti RL, eds.
Peabody's Control of Pipeline Corrosion. Houston, Tex.: NACE International, 2001;
297–317.
22. Al-Darbi MM, Agha K, Islam MR. Modeling and simulation of the pitting micro-
biologically influenced corrosion in different industrial systems. In: CORROSION
2005, Paper # 505. Houston, Tex.: NACE International, 2005.
23. Clarke BH. Microbiologically influenced corrosion in fire sprinkler systems. In:
Fire Protection Engineering, 2001; 9: 14–22.

