Page 461 - Corrosion Engineering Principles and Practice
P. 461
428 C h a p t e r 1 0 C o r r o s i o n i n S o i l s a n d M i c r o b i o l o g i c a l l y I n f l u e n c e d C o r r o s i o n 429
References
1. Hill EC. Microbial Aspects of Metallurgy. New York, N.Y.: American Elsevier,
1970.
2. Robinson WC. Testing soil for corrosiveness. Materials Performance 1993;
32: 56–8.
3. Palmer JD. environmental characteristics controlling the soil corrosion of
ferrous piping. In: Chaker V, Palmer JD, eds. Effects of Soil Characteristics on
Corrosion. Philadelphia, Pa.: American Society for Testing and Materials,
1989; 5–17.
4. Spickelmire B. Corrosion considerations for ductile iron pipe. In: Materials
Performance 2002; 41: 16–23.
5. Heim M, Schwenk W. Corrosion in aqueous solutions and soil. In: von
Baeckmann W, Schwenk W, Prinz W, eds. Handbook of Cathodic Protection. 1997;
139–52.
6. Roberge PR. Corrosion Inspection and Monitoring. New York, N.Y.: John Wiley &
Sons, 2007.
7. Wilmott M, Highams J, Ross R, Kopystinski A. Coating and thermal insula-
tion of subsea or buried pipelines. Journal of Protective Coatings & Linings 2000;
17: 47–54.
8. Wagner P, Little B. Impact of alloying on microbiologically influenced
corrosion—A review. Materials Performance 1993; 32: 65–8.
9. Jack TR. Monitoring microbial fouling and corrosion problems in industrial
systems. Corrosion Reviews 1999; 17: 1–31.
10. Tatnall RE. Introduction Part I. In: Kobrin G, ed. Microbiologically Influenced
Corrosion. Houston, Tex.: NACE International, 1993.
11. Geesey GG. Introduction Part II—Biofilm formation. In: Kobrin G, ed.
Microbiologically Influenced Corrosion. Houston, Tex.: NACE International,
1993.
12. Zintel TP, Licina GJ, Jack TR. Techniques for MIC monitoring. In: Stoecker II JG,
ed. A Practical Manual on Microbiologically Influenced Corrosion. Houston, Tex.:
NACE international, 2001.
13. Pope DH, Duquette D, Wayner Jr. PC, Johannes AH. Microbiologically Influenced
Corrosion: A State-of-the-Art Review. 2nd edn. Columbus, Ohio: Materials
Technology Institute, 1989.
14. Dexter SC. Microbiologically influenced corrosion. In: Cramer DS, Covino BS,
eds. Vol. 13A: Corrosion: Fundamentals, Testing, and Protection. Metals Park, Ohio:
ASM International, 2003; 398–416.
15. Sanders PF. Monitoring and control of sessile microbes: Cost effective ways
to reduce microbial corrosion. In: Sequeira CAC, Tiller AK, eds. Microbial
Corrosion–1. New York, N.Y.: Elsevier Applied Science, 1988; 191–223.
16. Gilbert PD, Herbert BN. Monitoring microbial fouling in flowing systems using
coupons. In: Hopton JW, Hill EC, eds. Industrial Microbiological Testing. London,
U.K.: Blackwell Scientific Publications, 1987; 79–98.
17. Gerhardt P, Murray RGE, Costilow RN et al. Manual of Methods for General
Bacteriology. Washington, D.C.: American Society of Microbiology, 1981.
18. Jack TR. Biological Corrosion Failures. In: Shipley RJ, Becker WT, eds. ASM
Handbook Vol. 11: Failure Analysis and Prevention. Materials Park, Ohio: ASM
International, 2002.
19. Techniques for Monitoring Corrosion and Related Parameters in Field Applications.
NACE 3T199. Houston, Tex.: NACE International, 1999.
20. Hunik JH, van den Hoogen MP, de Boer W, Smit M, Tramper J. Quantitative
determination of the spatial distribution of nitrosomonas europaea and nitro-
bacter agilis cells immobilized in k-carrageenan gel beads by a specific fluores-
cent-antibody labelling technique. Applied and Environmental Microbiology 1993;
59: 1951–4.
21. Costerton JW, Colwell RR. Native Aquatic Bacteria: Enumeration, Activity
and Ecology. [STP 695]. Philadelphia, Pa.: American Society for Testing and
Materials, 1977.

