Page 10 - Curvature and Homology
P. 10

X                         CONTENTS
            3.4  Infinitesimal transformations  .....
            3.5  The derivation 0(X) .........
            3.6  Lie transformation groups  ......
            3.7  Conformal transformations   ......
            3.8  Conformal transformations  (continued) .
            3.9  Conformally flat manifolds   ......
            3.10 Afiine collineations  .........
            3.11 Projective transformatiohs  ......
            Exercises   ...............
           Chapter  1V
        COMPACT  LIE GROUPS        ....................  132
            4.1  The Grassman algebra of a Lie group   ................ 132
            4.2  Invariant differential forms   ....................  134
            4.3  Local geometry of  a compact semi-simple Lie group   ......... 136
            4.4  Harmonic  forms on a compact semi-simple Lie group   ........ 139
            4.5  Curvature and betti numbers of  a compact semi-simple Lie group G  .  .  141
            4.6  Determination  of  the betti numbers of  the simple Lie groups   ..... 143
            Exercises   ............................. 145
           Chapter  V
        COMPLEX  MANIFOLDS        ....................  146
            5.1  Complex manifolds   .......................  147
            5.2  Almost complex manifolds   .................... 150
            5.3. Local hermitian  geometry   .................... 158
            5.4  The operators L and A   ......................  168
            5.5  Kaehler manifolds   .......................  173
            5.6  Topology of  a Kaehler manifold   .................. 175
            5.7  Effective forms on an hermitian manifold   ..............  179
            5.8  Holomorphic maps . Induced structures   ............... 182
            5.9  Examples of  Kaehler manifolds   .................. 184
            Exercises   .............................  189
            Chapter  VI
         CURVATURE AND HOMOLOGY OF
            KAEHLER MANIFOLDS       ...................  197
            6.1  Holomorphic curvature   .....................  199
            6.2  The effect of positive Ricci curvature   ...............  205
            6.3  Deviation from constant holomorphic curvature  ...........  206
            6.4  Kaehler-Einstein  spaces   .....................  208
            6.5  Holomorphic  tensor  fields   ....................  210
            6.6  Complex parallelisable manifolds   .................  213
            6.7  Zero curvature   .........................  215
            6.8  Compact complex parallelisable manifolds   .............  217
            6.9  A topological characterization of  compact complex parallelisable manifolds  220
            6.10 d"-cohomology   ........................  221
            6.1 1  Complex imbedding   ......................  223
            6.12  Euler characteristic   .......................  227
   5   6   7   8   9   10   11   12   13   14   15