Page 9 - Curvature and Homology
P. 9

........................  v
         PREFACE TO THE ENLARGED EDITION
         PREFACE  ........................................  vii
                                                                     ...
         NOTATION INDEX
                      ...................................  x111
         INTRODUCTION
                    .....................................  xv
            Chapter  I
         RIEMANNIAN MANIFOLDS         ..................             I
            1.1  Differentiable manifolds   .....................  1
            1.2  Tensors   .............................  5
            1.3  Tensor bundles  .........................  9
            1.4  Differential forms  ........................  12
            1.5  Submanifolds  ..........................  17
            1.6  Integration of differential forms   ..................  19
            1.7  Affine connections  ........................  23
            1.8  Bundle of  frames   ........................ 27
            1.9  Riemannian  geometry   ......................  30
            1.10 Sectional curvature   ....................... 35
            1.11  Geodesic coordinates   ......................  40
            Exercises   .............................  41

            Chapter  I1
         TOPOLOGY  OF  DIFFERENTIABLE  MANI-
            FOLDS   .............................  56
            2.1  Complexes  ...........................  56
            2.2  Singular homology   .......................  60
            2.3  Stokes' theorem  .........................  62
            2.4  De Rham cohomology   ...................... 63
            2.5  Periods   ............................ 64
            2.6  Decomposition theorem  for compact Riemann surfaces  ........  65
            2.7  The star isomorphism   ......................  68
            2.8  Harmonic forms . The operators 6 and  A  ..............  71
            2.9  Orthogonality relations  ......................  73
            2.10  Decomposition  theorem  for compact  Riemannian  manifolds   .....  75
            2.1 1  Fundamental theorem   .....................  76
            2.12  Explicit expressions for d, 6 and A   ................  77
            Exercises   .............................  78
            Chapter  Ill
         CURVATURE  AND  HOMOLOGY  OF  RlE-                         v
            MANNIAN MANIFOLDS         ..................  82
            3.1  Some contributions of S  . Bochner   .................  82
            3.2  Curvature and betti numbers   ...................  85
            3.3  Derivations in a graded algebra  ..................  95
   4   5   6   7   8   9   10   11   12   13   14