Page 11 - Curvature and Homology
P. 11

CONTENTS                         xi

           6.13 The effect of sufficiently many holomorphic differentials   ....... 230
           6.14  The vanishing theorems of Kodaira  ....
                                            '
                                             .............  232
           Exercises   ..............................  237
           Chapter  VII
        GROUPS OF TRANSFORMATIONS  OF
           KAEHLER AND ALMOST  KAEHLER
           MANIFOLDS      .........................  244
           7.1 Infinitesimal  holomorphic  transformations   .............  246
           7.2 Groups of  holomorphic transformations   .............. 252
           7.3 Kaehler manifolds with constant Ricci scalar curvature   ........ 255
           7.4 A theorem on transitive groups of  holomorphic transformations   .... 258
           7.5 Infinitesimal conformal transformations . Automorphisms   ....... 259
           7.6 Conformal maps of  manifolds with constant scalar curvature   ..... 263
           7.7  Infinitesimal transformations of  non-compact manifolds   ........ 265
           Exercises   .............................  266

           Appendix  A
        DE  RHAM'S THEOREMS       ....................  270
           A.1  The 1-dimensional case  .....................  270
           A.2  Cohomology  ..........................  271
           A.3  Homology  ...........................  275
           A.4  The groups HP(M..  A a)   .....................  277
           A.5  The groups Hp(M. S,  ..................... 278
                               )
           A.6  PoincarC's  lemma  ........................ 280
           A.7  Singular homology of  a starshaped region in R"  ...........  281
           A.8  Inner products  .........................  283
           A.9  De Rham's isomorphism theorem for simple coverings  ........ 284
           A.10  De Rham's isomorphism theorem   ................ 289
           A.11  De  Rham's  existence theorems   .................  291
           Appendix  B
        THE CUP PRODUCT        ......................  293
           B.1  The cup product   ........................  293
           B.2  The ring isomorphism   ...................... 294

           Appendix  C
        THE  HODGE EXISTENCE THEOREM         ............. 296
           Decomposition theorem   ....................... 296
           Appendix  D
        PARTITION  OF  UNITY    ..................... 301
           Appendix E
        HOLOMORPHIC BISECTIONAL CURVATURE             ...........  303
           E.1  Spaces of constant holomorphic sectional curvature  ................ 304
   6   7   8   9   10   11   12   13   14   15   16