Page 12 - Curvature and Homology
P. 12

CONTENTS
            E.2 Ricci  tensor   ....................................  305
            E.3  Complex submanifolds  ..............................  305
            E.4 Complex submanifolds of a space of positive holomorphic
               bisectional curvature   ...............................  306
            E.5 The second cohomology group   .........................  308
            E.6 Einstein-Kaehler manifolds with positive holomorphic
               bisectional curvature   ...............................  309

            Appendix F
         THE GAUSS-BONNET THEOREM           .....................  314
            R 1 Weil homomorphism   ...............................  314
            R2 Invariant polynomials  ...............................  315
            R3 Chern classes   ...................................  318
            R4 Euler classes  ....................................  323
            Appendix G
         SOME APPLICATIONS OF THE GENERALIZED
            GAUSS-BONNET THEOREM         .......................  327
            G.I  Preliminary notions   ...............................  329
            G.2  Normalization  of curvature   ...........................  330
            G.3  Mean curvature and Euler-Poincard characteristic   ..............  331
            G.4  Curvature and holomorphic curvature   .....................  334
            G.5  Curvature as an average  .............................  337
            G.6  Inequalities between holomorphic curvature and curvature   .........  338
            G.7  Holomorphic curvature and Euler-PoincarC characteristic   ..........  343
            G.8  Curvature and volume  ..............................  346
            G.9  The curvature transformation  ..........................  352
            G.IO Holomorphic pinching and Euler-PoincarC  characteristic  ...........  357

            Appendix H
         AN APPLICATION OF BOCHNER'S LEMMA            ............ 361
            H . 1 A pure F-structure   ................................  361
            H.2 Proof of the main result   .............................  364
            Appendix I
         THE KODAIRA VANISHING THEOREMS          ................  370
             .  Complex line bundles
            I I               ...............................  370
            1.2 The spaces A F(B)  ................................  373
            1.3 Explicit expression  for  0 , ............................ 374
            1.4 The vanishing theorems . : ............................ 377
   7   8   9   10   11   12   13   14   15   16   17