Page 216 - Decision Making Applications in Modern Power Systems
P. 216

Adaptive estimation and tracking of power quality disturbances Chapter | 6  179


             [19] H.K. Sahoo, P.K. Dash, Robust estimation of power quality disturbances using unscented
                 HN filter, Int. J. Electr. Power Energy Syst. 73 (2015) 438 447.
             [20] H.K. Sahoo, P.K. Dash, N.P. Rath, B.N. Sahu, Harmonic estimation in a power system
                 using hybrid HN-adaline algorithm, in: IEEE International Conference (TENCON 2009),
                 Singapore, 23 26 Jan. 2009, pp. 1 6.
             [21] S. Shukla, S. Mishra, B. Singh, Empirical-mode decomposition with Hilbert transform for
                 power quality assessment, IEEE Trans. Power Deliv. 24 (4) (2009) 2159 2165.
             [22] S. Shukla, S. Mishra, B. Singh, Power quality event classification under noisy conditions
                 using EMD-based de-noising techniques, IEEE Trans. Ind. Inform. 10 (2) (2014)
                 1044 1054.
             [23] N.E. Huang, et al., The empirical mode composition and the Hilbert spectrum for nonlin-
                 ear and non-stationary time series analysis, Proc. R. Soc. Lond. A 454 (1998) 903 995.
             [24] K. Ghosh Atish, L. Lubkeman David, The classification of power system disturbance
                 waveforms using a neural network approach, IEEE Trans. Power Deliv. 10 (1) (1995)
                 109 115.
             [25] M.K. Saini, R. Kapoor, Classification of power quality events—a review, Electr. Power
                 Syst. Res. 43 (2012) 11 19.
             [26] S. Misra, C.N. Bhende, B.K. Panigrahi, Detection and classification of power quality dis-
                 turbances using s-transform and probabilistic neural network, IEEE Trans. Power Deliv.
                 23 (1) (2008) 280 287.
             [27] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.
             [28] Khasnobish A., Bhattacharya S., Konar A., Tibarewala D.N., Nagar A.K. A two-fold clas-
                 sification for composite decision about localized arm movement from EEG by SVM and
                 QDA techniques, in: IEEE International Joint Conference on Neural Networks, San Jose,
                 CA, 2011.
             [29] U.B. Parikh, B. Das, R. Maheshwari, Fault classification technique for series compensated
                 transmission line using support vector machine, Int. J. Electr. Power Energy Syst. 32 (6)
                 (2010) 629 636.
             [30] LIBSVM—a library for support vector machines. Available from: ,http://www.csie.
                 ntu..
   211   212   213   214   215   216   217   218   219   220   221