Page 216 - Decision Making Applications in Modern Power Systems
P. 216
Adaptive estimation and tracking of power quality disturbances Chapter | 6 179
[19] H.K. Sahoo, P.K. Dash, Robust estimation of power quality disturbances using unscented
HN filter, Int. J. Electr. Power Energy Syst. 73 (2015) 438 447.
[20] H.K. Sahoo, P.K. Dash, N.P. Rath, B.N. Sahu, Harmonic estimation in a power system
using hybrid HN-adaline algorithm, in: IEEE International Conference (TENCON 2009),
Singapore, 23 26 Jan. 2009, pp. 1 6.
[21] S. Shukla, S. Mishra, B. Singh, Empirical-mode decomposition with Hilbert transform for
power quality assessment, IEEE Trans. Power Deliv. 24 (4) (2009) 2159 2165.
[22] S. Shukla, S. Mishra, B. Singh, Power quality event classification under noisy conditions
using EMD-based de-noising techniques, IEEE Trans. Ind. Inform. 10 (2) (2014)
1044 1054.
[23] N.E. Huang, et al., The empirical mode composition and the Hilbert spectrum for nonlin-
ear and non-stationary time series analysis, Proc. R. Soc. Lond. A 454 (1998) 903 995.
[24] K. Ghosh Atish, L. Lubkeman David, The classification of power system disturbance
waveforms using a neural network approach, IEEE Trans. Power Deliv. 10 (1) (1995)
109 115.
[25] M.K. Saini, R. Kapoor, Classification of power quality events—a review, Electr. Power
Syst. Res. 43 (2012) 11 19.
[26] S. Misra, C.N. Bhende, B.K. Panigrahi, Detection and classification of power quality dis-
turbances using s-transform and probabilistic neural network, IEEE Trans. Power Deliv.
23 (1) (2008) 280 287.
[27] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.
[28] Khasnobish A., Bhattacharya S., Konar A., Tibarewala D.N., Nagar A.K. A two-fold clas-
sification for composite decision about localized arm movement from EEG by SVM and
QDA techniques, in: IEEE International Joint Conference on Neural Networks, San Jose,
CA, 2011.
[29] U.B. Parikh, B. Das, R. Maheshwari, Fault classification technique for series compensated
transmission line using support vector machine, Int. J. Electr. Power Energy Syst. 32 (6)
(2010) 629 636.
[30] LIBSVM—a library for support vector machines. Available from: ,http://www.csie.
ntu..