Page 256 - Decision Making Applications in Modern Power Systems
P. 256

Effects of electrical infrastructures in grid with high penetration Chapter | 8  221


              [8] M.S. Whittingham, History, evolution, and future status of energy storage, Proc. IEEE
                 100 (2012) 518 1534.
              [9] D.Q. Oliveira, A.C. Zambroni de Souza, L.F.N. Delboni, Optimal plug-in hybrid electric
                 vehicles recharge in distribution power systems, Electr. Power Syst. Res. 98 (2013)
                 77 785.
             [10] C. Jin, X. Sheng, P. Ghosh, Optimized electric vehicle charging with intermittent renew-
                 able energy sources, IEEE J. Select. Top. Signal Process. 8 (2014) 1063 1072.
             [11] H. Yang, H. Pan, F. Luo, J. Qiu, Y. Deng, M. Lai, et al., Operational planning of electric
                 vehicles for balancing wind power and load fluctuations in a microgrid, IEEE Trans.
                 Sustain. Energy 8 (2017) 592 604.
             [12] I. Lampropoulos, W.L. Kling, P.F. Ribeiro, J. van den Berg, History of demand side man-
                 agement and classification of demand response control schemes, in: IEEE Power and
                 Energy Society General Meeting (PES), 2013, pp. 1 5.
             [13] P. Kadurek, J.F.G. Cobben, W.L. Kling, P.F. Ribeiro, Aiding power system support by
                 means of voltage control with intelligent distribution substation, IEEE Trans. Smart Grid
                 5 (1) (2014) 84 91.
             [14] P.H. Nguyen, W.L. Kling, P.F. Ribeiro, Smart power router: a flexible agent-based con-
                 verter interface in active distribution networks, IEEE Trans. Smart Grid 2 (2011)
                 487 495.
             [15] M.S. Illindala, H.J. Khasawneh, A.A. Renjit, Flexible distribution of energy and storage
                 resources: integrating these resources into a microgrid, IEEE Ind. Appl. Mag. 21 (2015)
                 32 42.
             [16] C.A. Can ˜izares, R. Palma-Pehnke, Trends in microgrid control, IEEE Trans. Smart Grid 5
                 (4) (2014) 1905 1919.
             [17] Y.R. Rodrigues, M.F.Z. Souza, A.C. Zambroni de Souza, B.I.L. Lopes, Unbalanced load
                 flow for microgrids considering droop method, in: IEEE PES General Meeting, 2016.
             [18] M.R. Monteiro, Y.R. Rodrigues, J.P.O.S. Minami, A.C. Zambroni de Souza, P.F. Ribeiro,
                 L. Wang, et al., Unbalanced frequency dependent load flow for microgrids, in: IEEE PES
                 General Meeting, 2018.
             [19] J.A.P. Lopes, S. Member, C.L. Moreira, A.G. Madureira, Defining control strategies for
                 microgrids islanded operation, IEEE Trans. Power Syst. 21 (2) (2006) 916 924.
             [20] J.M. Rey, P. Mart´ ı, M. Velasco, J. Miret, M. Castilla, Secondary switched control with no
                 communications for islanded microgrids, IEEE Trans. Ind. Electron. 64 (2017)
                 8534 8545.
             [21] Y.R. Rodrigues, M.R. Monteiro, A.C. Zambroni de Souza, P.F. Ribeiro, L. Wang, et al.,
                 Adaptative secondary control for energy storage in island microgrids, in: IEEE PES
                 General Meeting, 2018.
             [22] J.M. Guerrero, J.C. Vasquez, J. Matas, L.G. de Vicuna, M. Castilla, Hierarchical control
                 of droop-controlled AC and DC microgrids—a general approach toward standardization,
                 IEEE Trans. Ind. Electron. 58 (2011) 158 172.
             [23] K. Qian, C. Zhou, M. Allan, Y. Yuan, Modeling of load demand due to EV battery charg-
                 ing in distribution systems, IEEE Trans. Power Syst. 26 (2011) 802 810.
             [24] N. Chen, C.W. Tan, T.Q.S. Quek, Electric vehicle charging in smart grid: optimality and
                 valley-filling algorithms, IEEE J. Select. Top. Signal Process. 8 (2014) 1073 1083.
             [25] E. Sortomme, M.M. Hindi, S.D. James MacPherson, S.S. Venkata, Coordinated charging
                 of plug-in hybrid electric vehicles to minimize distribution system losses, IEEE Trans.
                 Smart Grid 2 (2011) 198 205.
   251   252   253   254   255   256   257   258   259   260   261