Page 338 - Decision Making Applications in Modern Power Systems
P. 338

Decision-making-based optimal generation-side Chapter | 11  299


             [21] R.K. Sahu, S. Panda, S. Padhan, A novel hybrid gravitational search and pattern search
                 algorithm for load frequency control of nonlinear power system, Appl. Soft Comput. 29
                 (2015) 310 327.
             [22] H.S.H. Alhelou, M.E.H. Golshan, M.H. Fini, Multi agent electric vehicle control based
                 primary frequency support for future smart micro-grid, in: Smart Grid Conference (SGC),
                 2015, IEEE, 2015.
             [23] H.H. Alhelou, M.E.H. Golshan, Hierarchical plug-in EV control based on primary fre-
                 quency response in interconnected smart grid, in: 2016 24th Iranian Conference on
                 Electrical Engineering (ICEE), IEEE, 2016.
             [24] A. Ghafouri, J. Milimonfared, G.B. Gharehpetian, Fuzzy-adaptive frequency control of
                 power system including microgrids, wind farms, and conventional power plants, IEEE
                 Syst. J. 12 (2017) 2772 2781.
             [25] H.H. Alhelou, M.E. Hamedani-Golshan, E. Heydarian-Forushani, A.S. Al-Sumaiti, P.
                 Siano, Decentralized fractional order control scheme for LFC of deregulated nonlinear
                 power systems in presence of EVs and RER, in: 2018 International Conference on Smart
                 Energy Systems and Technologies (SEST), IEEE, September 2018, pp. 1 6.
             [26] H. Haes Alhelou, M.E. Hamedani Golshan, M. Hajiakbari Fini, Wind driven optimization
                 algorithm application to load frequency control in interconnected power systems consider-
                 ing GRC and GDB nonlinearities, Electr. Power Compon. Syst. 46 (2018) 11 12.
             [27] H. Alhelou, M.E. Hamedani-Golshan, R. Zamani, E. Heydarian-Forushani, P. Siano,
                 Challenges and opportunities of load frequency control in conventional, modern and future
                 smart power systems: a comprehensive review, Energies 11 (10) (2018) 2497.
             [28] R. Billinton, Power System Reliability Evaluation, Gordon and Breach, New York, 1970.
             [29] P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, et al.,
                 Definition and classification of power system stability, IEEE Trans. Power Syst. 19 (3)
                 (2004) 1387 1401.
             [30] K. Carlsen, L.H. Fink, Operating under stress and strain, IEEE Spectr. 15 (1978) 48 53.
             [31] M. Zima, M. Bockarjova, Lecture Notes Operation, Monitoring and Control Technology
                 of Power Systems, ETH Zurich, 2007.
             [32] F.D. Galiana, F. Bouffard, J.M. Arroyo, J.F. Restrepo, Scheduling and pricing of coupled
                 energy and primary, secondary, and tertiary reserves, Proc. IEEE 93 (11) (2005)
                 1970 1983.
             [33] F. Bouffard, F.D. Galiana, A.J. Conejo, Market-clearing with stochastic security   Part I:
                 formulation, IEEE Trans. Power Syst. 20 (4) (2005) 1818 1826.
             [34] F. Bouffard, F. Galiana, Stochastic security for operations planning with significant wind
                 power generation, IEEE Trans. Power Syst. 23 (2) (2008) 306 316.
             [35] J.M. Morales, A. Conejo, J. Pe ´rez-Ruiz, Economic valuation of reserves in power systems
                 with high penetration of wind power, IEEE Trans. Power Syst. 24 (2) (2009) 900 910.
             [36] B. Stott, O. Alsac, Optimal power flow   a brief anatomy, in: Proceeding of XII
                 Symposium of Specialists in Electric Operational and Expansion Planning, 2012.
             [37] K. Margellos, T. Haring, P. Hohayem, M. Schubiger, J. Lygeros, G. Andersson, A robust
                 reserve scheduling technique for power systems with high wind penetration, in:
                 International Conference on Probabilistic Methods Applied to Power Systems, 2012.
             [38] H. Bevrani, P.R. Daneshmand, Fuzzy logic-based load-frequency control concerning high
                 penetration of wind turbines, IEEE Syst. J. 6 (1) (2012) 173 180.
   333   334   335   336   337   338   339   340   341   342   343