Page 94 - Decision Making Applications in Modern Power Systems
P. 94
Uncertainty management in decision-making Chapter | 2 61
[11] A. Narayan, K. Ponnambalam, Risk-averse stochastic programming approach for micro-
grid planning under uncertainty, Renew. Energy 101 (2017) 399 408.
[12] G.B. Dantzig, Linear programming under uncertainty, Stochastic Programming, Springer,
2010, pp. 1 11.
[13] G. Carpinelli, P. Caramia, P. Varilone, Multi-linear Monte Carlo simulation method for
probabilistic load flow of distribution systems with wind and photovoltaic generation sys-
tems, Renew. Energy 76 (2015) 283 295.
[14] R. Dufo-Lo ´pez, E. Pe ´rez-Cebollada, J.L. Bernal-Agust´ ın, I. Mart´ ınez-Ruiz, Optimisation
of energy supply at off-grid healthcare facilities using Monte Carlo simulation, Energy
Convers. Manage. 113 (2016) 321 330.
[15] E.J. da Silva Pereira, J.T. Pinho, M.A.B. Galhardo, W.N. Mace ˆdo, Methodology of risk
analysis by Monte Carlo method applied to power generation with renewable energy,
Renew. Energy 69 (2014) 347 355.
[16] U. Arnold, O ¨ . Yildiz, Economic risk analysis of decentralized renewable energy infra-
structures—a Monte Carlo simulation approach, Renew. Energy 77 (2015) 227 239.
[17] L. Bin, M. Shahzad, Q. Bing, M.R. Zafar, R. Islam, M.U. Shoukat, Probabilistic power
flow model to study uncertainty in power system network based upon point estimation
method, Am. J. Electr. Power Energy Syst. 6 (2017) 64 71.
[18] A. Soroudi, R. Caire, N. Hadjsaid, M. Ehsan, Probabilistic dynamic multi-objective model
for renewable and non-renewable distributed generation planning, IET Gener. Transm.
Distrib. 5 (2011) 1173 1182.
[19] A.J. Conejo, M. Carrio ´n, J.M. Morales, Decision Making Under Uncertainty in Electricity
Markets, vol. 1, Springer, 2010.
[20] A. Soroudi, Possibilistic-scenario model for DG impact assessment on distribution net-
works in an uncertain environment, IEEE Trans. Power Syst. 27 (2012) 1283 1293.
[21] A. Soroudi, M. Ehsan, IGDT based robust decision making tool for DNOs in load pro-
curement under severe uncertainty, IEEE Trans. Smart Grid 4 (2013) 886 895.
[22] A. Soroudi, A. Rabiee, A. Keane, Information gap decision theory approach to deal with
wind power uncertainty in unit commitment, Electr. Power Syst. Res. 145 (2017) 137 148.
[23] S. Nojavan, M. Majidi, K. Zare, Risk-based optimal performance of a PV/fuel cell/bat-
tery/grid hybrid energy system using information gap decision theory in the presence of
demand response program, Int. J. Hydrogen Energy 42 (2017) 11857 11867.
[24] A. Rabiee, S. Nikkhah, A. Soroudi, E. Hooshmand, Information gap decision theory for
voltage stability constrained OPF considering the uncertainty of multiple wind farms, IET
Renew. Power Gener. 11 (2016) 585 592.
[25] A. Soroudi, P. Maghouli, A. Keane, Resiliency oriented integration of DSRs in transmis-
sion networks, IET Gener. Transm. Distrib. 11 (2017) 2013 2022.
[26] D. Bertsimas, E. Litvinov, X.A. Sun, J. Zhao, T. Zheng, Adaptive robust optimization for
the security constrained unit commitment problem, IEEE Trans. Power Syst. 28 (2013)
52 63.
[27] S. Nojavan, B. Mohammadi-Ivatloo, K. Zare, Robust optimization based price-taker
retailer bidding strategy under pool market price uncertainty, Int. J. Electr. Power Energy
Syst. 73 (2015) 955 963.
[28] R. Wang, P. Wang, G. Xiao, A robust optimization approach for energy generation sched-
uling in microgrids, Energy Convers. Manage. 106 (2015) 597 607.
[29] A. Soroudi, P. Siano, A. Keane, Optimal DR and ESS scheduling for distribution losses
payments minimization under electricity price uncertainty, IEEE Trans. Smart Grid 7
(2016) 261 272.