Page 102 - Design and Operation of Heat Exchangers and their Networks
P. 102

90    Design and operation of heat exchangers and their networks


          and
                                           1
                                      e t c ¼  e t h                 (3.108)
                                          s +1
             The inverse transformation of Eqs. (3.107), (3.108) is easy to be per-
          formed, which yields the solutions in the space domain with the Bessel func-
          tion of zero order:
             Solutions with Bessel function of zero order (Nusselt, 1911; Anzelius, 1926)

                                x
                                ð

                                         p ffiffiffiffiffiffi
                               y
                                    0
                                   x
                 t h x, yÞ ¼ 1 e  e  I 0 2  x y dx 0
                                            0
                  ð
                                0
                                             y
                                             ð
                                                      p ffiffiffiffiffiffi
                            x y     p ffiffiffiffiffi    x   y 0        0
                        ¼ e   I 0 2 xy + e    e  I 0 2  xy dy        (3.109)
                                                         0
                                             0
                                        y
                                        ð
                                                 p ffiffiffiffiffiffi
                                                    0
                            t c x, yÞ ¼ e  x  e  y 0 I 0 2  xy dy 0  (3.110)
                             ð
                                        0
             The solution of the governing equation system (3.102)–(3.104) has sev-
          eral different forms. Eqs. (3.109), (3.110) are only one pair of them. Other
          forms of the solution are summarized as follows:
             Solutions with derivative of Bessel function of zero order (Schumann, 1929):
                                  ∞                 ∞
                                 X                  X
                                     n
                                                        n
                t h x, yÞ ¼ 1 e  x y  x M n xyðÞ ¼ e  x y  y M n xyðÞ  (3.111)
                 ð
                                 n¼1                n¼0
                                 ∞                  ∞
                                 X                  X
                                                        n
                                     n
                t c x, yÞ ¼ 1 e  x y  x M n xyðÞ ¼ e  x y  y M n xyðÞ  (3.112)
                 ð
                                 n¼0                n¼1
                         n  p ffiffi
                        d I 0 2 zÞ
                           ð
          where M n zðÞ ¼      .
                          dz n
             Solution with Bessel function of higher order (Goldstein, 1953):
                                         ∞      n=2
                                        X    y        p ffiffiffiffiffi
                          t h x, yÞ ¼ e  x y      I n 2  xy          (3.113)
                            ð
                                             x
                                        n¼0
             Solutions with double power series (Binnie and Poole, 1937; Smith, 1934):
                              ∞      n   ∞      k
                             X   ð  1Þ  X   ð  1Þ kn + k 1Þ!
                                                  ð
                 t h x, yÞ ¼ 1+      2  y n          2      x k      (3.114)
                   ð
                                  n!
                                                  k!
                              n¼0  ðÞ   k¼1       ðÞ
   97   98   99   100   101   102   103   104   105   106   107