Page 98 - Design and Operation of Heat Exchangers and their Networks
P. 98

86    Design and operation of heat exchangers and their networks


          where
                                     p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                              ð
                                S 3 ¼  9 4R s 1 R s Þ                 (3.86)
             If R s ¼1, the denominator of Eq. (3.85) becomes zero. In such a case, we
                                                    9
          can add a very small deviation, for example, 10 ,to R s .
             Another solution was proposed by Roetzel (1988) for the same value of
          kA in the counterflow passes (the first and third passes) and different kA value
          in the parallel-flow pass (the second pass). The kA ratio γ is defined by
          Eq. (3.78).
          R s 6¼ 1 :
                   s 1  s 3  s 2   s 2  s 3  s 1            s 2  s 1  s 3
                  ð
                s 1 e + e Þ e  1Þ + s 2 e + e Þ 1 e Þ + NTU s 1 R s Þ e  e Þ 1+ e Þ
                                        ð
                                                                  ð
                         ð
                                  ð
                                                     ð
                                                           ð
          ε s ¼  s  s    s        s   s      s               s   s      s
                                        ð
                                 ð
                                                            ð
                                                                   ð
                                                      ð
               ð
              s 1 e 1 + e 3 Þ R s e 2  1ð  Þ + s 2 e 2 + e 3 Þ 1 R s e 1 Þ + NTU s 1 R s Þ e 2  e 1 Þ 1+ R s e 3 Þ
                                                                       (3.87)
          R s ¼ 1 :
             ε s      γ 1 γÞ
                       ð
                ¼ NTU s
           1+ ε s      1+3γ
                                                                     1
                      1+ γ      1+ 3γÞNTU s =2   1  1 γÞNTU s =2   1
                           2
                  2           e  ð         1    + e ð        +1        (3.88)
                     1+3γ
          where
                                            r ffiffiffiffiffiffiffiffiffiffiffi
                                        p     p 2
                                  s 1 ¼  +       q                    (3.89)
                                        2     4
                                            r ffiffiffiffiffiffiffiffiffiffiffi
                                        p     p 2
                                  s 2 ¼          q                    (3.90)
                                        2     4
                                     1
                                 s 3 ¼ R s NTU s 1 γð  Þ              (3.91)
                                     2

                                           1
                              p ¼ NTU s 1  R s 1 3γð  Þ               (3.92)
                                           2
                                 1            2
                                                 ð
                             q ¼ γ 1 γð  ÞNTU R s 1 R s Þ             (3.93)
                                              s
                                 2
             The solutions of general n-m shell-and-tube heat exchangers can be
          obtained by the use of the analytical solution for multistream parallel channel
          heat exchangers introduced in Section 3.6.
          3.2.3 Rating problem
          In rating problem, since the geometry is specified, the surface area A is
          known. In order to calculate the fluid properties, we will first assume the
   93   94   95   96   97   98   99   100   101   102   103