Page 115 - Design and Operation of Heat Exchangers and their Networks
P. 115

Steady-state characteristics of heat exchangers  103






                 Example BA 5,5 2             2
                                   B       A
                                  1         1
                        "                    #
                               N                      N
                      1     1  X                    1  X
                                                              ð
                  ε 1 ¼  1       α n F n +1 b A , a A Þ ¼ 1   β F n +1 a B , b B Þ (3.189)
                                       ð
                                                          n
                     R 1    a A                     b B
                              n¼0                     n¼0
                 where α n and β n are determined by
                     N
                    X
                        inv
                       A ð b A , b B , a A Þα n + B mn b B  ð        (3.190)
                                          ðÞβ ¼ 1 m ¼ 0, 1, 2, …, NÞ
                        mn                    n
                    n¼0
                     N
                    X
                                   inv
                          ðÞα n + A ð
                                                   ð
                       B mn a A      a B , a A , b B Þβ ¼ 1 m ¼ 0, 1, 2, …, NÞ  (3.191)
                                   mn         n
                    n¼0
                                       ð m +1Þ!  ð q         q 0 m
                             inv                        0         0
                                                   ð
                            A ð p, q, rÞ ¼     G n p 1 q =qÞ, rŠ  dq
                                                  ½
                             mn
                                        q m +1  0            m!
                                 "    k m k      !            !             #
                               m
                       m m +1ð  Þ!  X  ð  pÞ  X m k  r n + j +1  m
                   ð
                 ¼ 1Þ     m +1                                    F n + k +1 p, rð  Þ
                         p          k!        j   ð n + j +1Þ!  k
                               k¼0      j¼0
                                                                     (3.192)
                                               m +1 x n
                                     B mn xðÞ ¼                      (3.193)
                                             n + m +1 n!
                    Baclic et al. (1988) showed that the results with N¼1 are sufficiently
                 accurate for practical purposes in any combination of the NTU, R, and
                 ϕ values. N¼3 will yield ε values accurate to the sixth significant figure.
                    For the given data, R 1 ¼2, NTU 1,A ¼0.4, and NTU 1,B ¼0.6, we have
                 a A ¼0.4, b A ¼0.8, a B ¼0.6, and b B ¼1.2. We take N¼1 as an example and
                         inv
                 calculate A mn and B mn with Eqs. (3.192), (3.193), respectively, which yields

                       inv           0:24212 0:05505            10:6
                                                         ðÞ
                     A ð b A , b B , a A Þ ¼        , B mn b B ¼     ,
                       mn            0:26832 0:05641            10:8

                             1   0:2      inv           0:59887 0:41189
                    B mn a A ¼         , A ð a B , a A , b B Þ ¼        :
                       ðÞ
                             10:26667     mn            0:63079 0:43978

                             inv
                                            ðÞ
                            A ð b A , b B , a A Þ B mn b B
                             mn
                    Let A ¼               inv         ; its inverse matrix can be
                               ðÞ
                            B mn a A     A ð a B , a A , b B Þ
                                          mn
                 obtained as
                             2                                     3
                               0:42074  0:17161   4:12743   2:97951
                             6  0:12388  0:69757  14:8676  15:02479  7
                          1
                       A   ¼  6                                    7
                             4  4:06472  2:94894  0:18479  0:008104  5
                               4:94852   5:04292  0:10497  0:049999
                                                                        Continued
   110   111   112   113   114   115   116   117   118   119   120