Page 110 - Design and Operation of Heat Exchangers and their Networks
P. 110

98    Design and operation of heat exchangers and their networks



                                  ∂G n x, yÞ
                                     ð
                                          ¼ F n  G n                 (3.162)
                                     ∂x
                                           y n
                                  F n 0, yð  Þ ¼  ð n   0Þ           (3.163)
                                           n!
                                     G n x,0ð  Þ ¼ 0                 (3.164)
             Obviously, for n¼0, the previous equation system becomes the govern-
          ing equation system for the crossflow with both fluids unmixed
          (Eqs. 3.102–3.104). Therefore, we can express F 0 and G 0 as follows:
                                     ∞
                                           m
                                    X m X k
                                       y
                                             x
                      F 0 x, yð  Þ ¼ e  x y                  ð 3:118Þ, (3.165)
                                       m!    k!
                                    m¼0   k¼0
                                     ∞
                                          m 1
                                    X m X k
                                             x
                                        y
                      G 0 x, yð  Þ ¼ e  x y                  ð 3:117Þ, (3.166)
                                        m!    k!
                                    m¼1   k¼0
             Using the recurrence relations given by Romie (1987),
                                                    ð
                             F n x, yð  Þ ¼ G n x, yÞ + G n 1 x, yÞ  (3.167)
                                        ð
                                             ∞    m +1 m
                                            X    x   y
                             F  1 x, yð  Þ ¼ e  x y                  (3.168)
                                               ð m +1Þ!m!
                                            m¼0
                                               ∞     m
                                                   xy
                                              X   ðÞ
                                           x y
                               G  1 x, yð  Þ ¼ e      2              (3.169)
                                                   m!
                                                  ðÞ
                                              m¼0
                              ∂G  1 x, yÞ
                                  ð
                   G  2 x, yð  Þ ¼     ¼ F  1 x, yð  Þ G  1 x, yÞ
                                                        ð
                                 ∂y
                                   ∞                m
                                                  xy
                                  X      x       ðÞ
                            ¼ e  x y         1                       (3.170)
                                       m +1      ðÞ  2
                                                  m!
                                   m¼0
                        1
               G n x, yð  Þ ¼ ½ ð y x 2n +1ÞG n 1 x, yð  Þ +2y n +1ÞG n 2 x, yÞ
                                                                  ð
                                                   ð
                        n
                        + yG n 3 ð x, yފ n   1Þ                     (3.171)
                                     ð
          we can obtain F n (x, y) for n¼1, 2, …, ∞. We can also use the series
          expansions
                                ∞
                               X     k             p
                            x y             k=2     ffiffiffiffiffi
                 F n x, yð  Þ ¼ e      ð y=xÞ  I k 2 xy n   0ð  Þ    (3.172)
                                     n
                                k¼n
   105   106   107   108   109   110   111   112   113   114   115