Page 112 - Design and Operation of Heat Exchangers and their Networks
P. 112

100   Design and operation of heat exchangers and their networks


             The special functions F n , h, μ 1 , and μ 2 are calculated with the MatLab
          code “Examples for two-pass crossflow heat exchangers (MatLab code)”
          in the appendix:

                                           1             0:6063
              F 1 a A , b A Þ ¼ 0:6063, ν a A , b A Þ ¼  F 1 a A , b A Þ ¼  ¼ 0:7579,
                                  ð
                ð
                                               ð
                                           b A            0:8
                                           1            0:8407
                ð
                                  ð
                                               ð
              F 1 a B , b B Þ ¼ 0:8407, ν a B , b B Þ ¼  F 1 a B , b B Þ ¼  ¼ 0:7006,
                                           b B            1:2
                                     ∞
                                    X           n
                                           ðފ F n b A , a A Þ ¼ 0:2141,
                   hb A , a A , ϕKb B ¼  ½ ϕKb B  ð
                              ðފ
                    ½
                                    n¼1
                                     ∞
                                    X            n
                                            ðފ F n b A , a A Þ ¼  0:1532,
                             ðފ
                 ½
                hb A , a A ,  ϕKb B ¼  ½  ϕKb B     ð
                                    n¼1
                                      ∞
                                     X           n
                                          ðÞ=ϕŠ F n b B , a B Þ ¼ 0:1258
                           ðÞ=ϕŠ ¼
                   ½
                  hb B , a B , Kb A     ½ Kb A      ð
                                     n¼1
             The numerical integration known as Simpson’s rule can be applied to the
          calculation of Eqs. (3.159), (3.160), which yield
                              ð
                             1  a A
                                               0
                                                            0
                                                               0
            μ a A , b A , b B , ϕð  Þ ¼  F 0 b B , ϕ a A  x ފF 0 b A , a A  x Þdx ¼ 0:20892
                                                   ð
                                    ½
                                        ð
             1
                            a A 0 ð
                               1  a A
                                                             0
                                             0
                                                         0
              μ a A , b A , b B , ϕð  Þ ¼  F 0 b B , ϕx ÞF 0 b A , a A  x Þdx ¼ 0:20485
                                                ð
                                      ð
                2
                               a A 0
             Example BA1,5 2               2
                               B        A
                               1         1
                                 ð
                                         ð
                               ν ∗ a A , b A Þν ∗ a B , b B Þ
               ε 1 ¼ 1
                                     1 ν ∗ a A , b A Þν ∗ a B , b B Þ
                                                  ð
                                          ð
                             ðÞKb B
                      1 b B Kb A  ðÞ
                                                  ðÞ
                                          ðÞ
                                        Kb A + ϕKb B
                                    0:7593 0:7051
                 ¼ 1                                           ¼ 0:3752
                                              1 0:7593 0:7051
                      1 1:2 0:6883 0:5823
                                             0:6883 + 1:5 0:5823
                                                                  (3.180)
   107   108   109   110   111   112   113   114   115   116   117