Page 117 - Design and Operation of Heat Exchangers and their Networks
P. 117

Steady-state characteristics of heat exchangers  105



                Example BA 5,6 —cont’d
                   For the data given in Example BA 5,6 , we have
                                     inv
                                                   ðÞ
                                   A ð b A , b B , a A Þ B mn b B
                                    mn
                              A ¼
                                                  id
                                      ðÞ
                                   B mn a A     A ð a B , a A , b B Þ
                                                  mn
                                  2                              3
                                   0:24212 0:05505   1      0:6
                                   0:26832 0:05641   1      0:8
                                  6                              7
                                ¼  6                             7
                                  4   1      0:2  0:59887 0:41189  5
                                      1    0:26667 0:56695 0:38401
                 Its inverse matrix can be obtained as
                             2                                     3
                               0:37169  0:44782   4:17985   2:96969
                       A  1  ¼  6  0:12347  0:69527  15:1319  14:97529  7
                                                                   7
                             6
                             4  4:06485  2:94969  0:18465  0:008077  5
                               4:94769   5:03829  0:10409  0:049834
                 which yields
                                2   3     2 3    2        3
                                  α 0       1       0:39064
                                          6 7
                                6   7     1 1    6  0:41514  7
                                  α 1
                                6   7 ¼ A  6 7  ¼  6      7
                                  β
                                            1
                                4   5     4 5    4  0:92243  5
                                   0
                                  β         1      0:06334
                                   1
                         "                    #
                                N
                       1      1  X
                   ε 1 ¼  1       α n F n +1 b A , a A Þ
                                        ð
                       R 1   a A
                                n¼0

                       1     1
                     ¼   1     ð 0:39064 0:20630 + 0:41514 0:03956Þ ¼ 0:3787
                       2    0:4
                 Example BA 6,6 2             2
                                   B       A
                                  1         1
                 For the flow arrangement type BA 6,6 , the ε-NTU relationship is expressed
                 with Eq. (3.189), however, in which α n and β n are determined by
                    N
                    X
                        id
                                         ðÞβ ¼ 1 m ¼ 0, 1, 2, …, NÞ
                       A ð b A , b B , a A Þα n + B mn b B  ð        (3.197)
                        mn                    n
                    n¼0
                    N
                    X
                                  id
                          ðÞα n + A ð
                                                   ð
                       B mn a A      a B , a A , b B Þβ ¼ 1 m ¼ 0, 1, 2, …, NÞ  (3.198)
                                  mn          n
                    n¼0
                                 id
                    The functions A mn (p,q,r) and B mn (x) are determined by Eqs. (3.196),
                 (3.193), respectively.
                                                                        Continued
   112   113   114   115   116   117   118   119   120   121   122