Page 137 - Design and Operation of Heat Exchangers and their Networks
P. 137

Steady-state characteristics of heat exchangers  125



                            j ¼ 0:53Re  0:5        0:15 ð s fs =h f Þ  0:14  (3.276)
                                       2 ðÞ  l s =d h2ðÞ
                             ∗
                 For Re (2)  Re (2) +1000,
                                                    0:65        0:17
                                       0:36
                          f 2ðÞ ¼ 1:12Re   l s =d h2ðÞ  δ f =d h2ðÞ     (3.277)
                                       2 ðÞ
                                                   0:24       0:02
                                      0:4
                            j ¼ 0:21Re    l s =d h2ðÞ  δ f =d h2ðÞ      (3.278)
                                      2 ðÞ
                                                   ∗        ∗
                 For the Reynolds number between Re (2) and Re (2) +1000, the linear
              interpolation can be applied for f and j:
                    f 2ðÞ ¼ 1 γð  Þf  2 ðÞ,Re 2ðÞ ¼Re ∗ + γf  2 ðÞ,Re 2ðÞ ¼Re ∗  + 1000  (3.279)
                                           2 ðÞ            2 ðÞ
                           j ¼ 1 γÞj Re 2ðÞ ¼Re ∗ + γj Re 2ðÞ ¼Re ∗  + 1000  (3.280)
                              ð
                                             2 ðÞ          2 ðÞ
                                          Re 2ðÞ   Re ∗
                                                    2 ðÞ
                                      γ ¼                               (3.281)
                                             1000
                 Manglik and Bergles (1995) used a multivariable regression method to
              analyze the data for airflows (Pr¼0.7) of 18 fin geometries from the liter-
              ature and obtained the following corrections for the friction factor f and
                                                                             4
              Colburn j factor, covering the parameter ranges of 120 Re (3)  10 ,
              0.134 α f  0.997, 0.012 β f  0.048, and 0.041 γ f  0.121, where
                                                                        (3.282)
                                         α f ¼ s fs =h fs
                                                                        (3.283)
                                          β ¼ δ f =l s
                                           f
                                          γ ¼ δ f =s fs                 (3.284)
                                           f
                              ∗
                 For Re (3)  Re (3) ,
                                                     β
                                              α
                                                          γ
                           f 3ðÞ ¼ 9:6243Re  0:7422  0:1856 0:3053  0:2659  (3.285)
                                         3 ðÞ  f      f    f
                                                         γ
                                             α
                                                    β
                            j ¼ 0:6522Re  0:5403  0:1541 0:1499  0:0678  (3.286)
                                        3 ðÞ  f      f    f
                             ∗
                 For Re (3)  Re (3) +1000,
                                              α
                                                          γ
                                                     β
                           f 3ðÞ ¼ 1:8699Re  0:2993  0:0936 0:6820  0:2423  (3.287)
                                         3 ðÞ  f      f    f
                                                    β
                                             α
                                                         γ
                            j ¼ 0:2435Re  0:4063  0:1037 0:1955  0:1733  (3.288)
                                        3 ðÞ  f      f    f
                ∗      ∗
              Re (3) ¼Re (2) d h(3) /d h(2) . They also provided the following equations cover-
              ing the whole range of Reynolds number:
                                            β
                                     α
                  f 3ðÞ ¼ 9:6243Re  0:7422  0:1856 0:3053
                                3 ðÞ  f      f
                                                                   0:1  (3.289)
                                                   α
                                                            γ
                       γ  0:2659  1+7:669 10  8  Re 4:429 0:92 3:767 0:236
                                                       β
                        f                       3 ðÞ  f  f   f
   132   133   134   135   136   137   138   139   140   141   142