Page 136 - Design and Operation of Heat Exchangers and their Networks
P. 136

124   Design and operation of heat exchangers and their networks



                                         Δpρd h iðÞ
                                     f iðÞ ¼                         (3.267)
                                          2LG 2
                                               i ðÞ
          where G (1) and G (3) are based on the cross-sectional area h fs s fs and G (2) is
          based on the minimum cross-sectional area h fs (s fs  δ f ).
             By correlating experimental heat transfer and flow friction data from
          22 rectangular offset-fin plate-fin heat exchanger configurations, the follow-
          ing empirical relationships have been developed by Wieting (1975):

            f 1ðÞ ¼ 7:661Re  0:712        0:384 ð s fs =h fs Þ  0:092    Re 1ðÞ   1000    (3.268)
                         1 ðÞ  l s =d h1ðÞ
                                       0:781       0:534
                         0:198
           f 1ðÞ ¼ 1:136Re    l s =d h1ðÞ  δ f =d h1ðÞ  Re 1ðÞ   2000 (3.269)
                         1 ðÞ
                                      0:162     0:184
                         0:536
             j ¼ 0:483Re     l s =d h1ðÞ  ð s fs =h fs Þ  Re 1ðÞ   1000  (3.270)
                        1 ðÞ
            j ¼ 0:242Re  0:368   l s =d h1ðÞ    0:322    δ f =d h1ðÞ    0:089    Re 1ðÞ   2000    (3.271)
                        1 ðÞ
             Wieting also suggested a technique in the application of these correla-
          tions, which extends the correlations into the transitional Re range with
          the reference Reynolds number:

                 Re ∗  ¼ 41 l s =d h1ðÞ    0:772   δ f =d h1ðÞ    1:04  ð s fs =h fs Þ  0:179  (3.272)
                    1 ðÞ, f
                   ∗                  0:952        0:53     1:1
                 Re    ¼ 61:9 l s =d h1ðÞ  δ f =d h1ðÞ  ð s fs =h fs Þ  (3.273)
                    1 ðÞ, j
                                              ∗                        ∗
             Then, Eq. (3.268) is used for Re (1) <Re (1), f ,Eq. (3.270) for Re (1) <Re (1), j ,
                                 ∗                            ∗
          Eq. (3.269) for Re (1)  Re (1), f , and Eq. (3.271) for Re (1)  Re (1), j .
             Joshi and Webb (1987) got the critical Reynolds number indicating the
          flow transition from laminar to turbulent by visually reading the slope
          changes of the j and f curves from the plots of the data and proposed a cor-
          relation for the transition Reynolds number as

                                                1:23    0:58
                                          ð
                          ∗   G ∗ d h2ðÞ  257 l s =s fs Þ  ð δ f =l s Þ  d h2ðÞ
                       Re   ¼        ¼           p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  (3.274)
                          2 ðÞ   μ      δ f +1:328  l s d h2 ðÞ =Re 2 ðÞ
             Their correlations for the friction factor f and Colburn j factor are as
          follows:
                          ∗
             For Re (2)  Re (2) ,

                        f 2ðÞ ¼ 8:12Re  0:74   l s =d h2ðÞ    0:41 ð s fs =h fs Þ  0:02  (3.275)
                                    2 ðÞ
   131   132   133   134   135   136   137   138   139   140   141