Page 147 - Design and Operation of Heat Exchangers and their Networks
P. 147

Steady-state characteristics of heat exchangers  135


              3.6.2.1 Sequential block arrangement
              For sequential block arrangement,
                                                1
                                         P ¼ Q C                        (3.343)
              where P, Q, and C are mn mn matrices. The nonzero elements of Q and C
              are given as follows:

                                                  Þm + j ¼ μ            (3.344)
                          i ¼ 1;j ¼ 1,2,…,m : q j, n 1ð    f, nj  U f, nj

                q jj ¼ U p,1, j + η  + μ  U f,1, j + U p, nj + η  + μ   (3.345)
                             f,1, j  f,1, j             f , nj  f, nj  U f, nj
                                     q j,m + j ¼ μ f,1, j  U f,1, j     (3.346)
                                      Þm + j ¼ U p, nj + η              (3.347)
                                 c j, n 1ð          f , nj  U f, nj
                                    c jj ¼ U p,1, j + η f,1, j  U f,1, j  (3.348)

                                        Þm + j, n 2Þm + j ¼ μ           (3.349)
                 i ¼ n;j ¼ 1,2,…,m : q n 1ð  ð          f,n 1, j U f ,n 1, j

                      Þm + j, n 1Þm + j ¼ U p, nj + η  + μ
                  q n 1ð  ð                 f , nj  f, nj  U f, nj + U p,n 1, j
                                                                        (3.350)

                                    + η f,n 1, j  + μ f,n 1, j  U f ,n 1, j
                                        Þm + j, j ¼ μ                   (3.351)
                                   q n 1ð         f, nj  U f, nj
                              Þm + j, n 2Þm + j ¼ U p,n 1, j + η        (3.352)
                          c n 1ð  ð                   f,n 1, j U f,n 1, j
                                  Þm + j, n 1Þm + j ¼ U p, nj + η       (3.353)
                              c n 1ð  ð                f, nj  U f , nj
                                                 Þm + j, i 2Þm + j ¼ μ
                i ¼ 2,3,…,n 1;j ¼ 1,2,…,m : q i 1ð   ð           f,i 1, j U f,i 1, j
                                                                        (3.354)

                       Þm + j, i 1Þm + j ¼U p, ij + η  + μ
                    q i 1ð  ð               f, ij  f , ij  U f, ij + U p,i 1, j
                                                                        (3.355)

                                    + η  f,i 1, j  + μ f,i 1, j  U f,i 1, j
                                      Þm + j,im + j ¼ μ                 (3.356)
                                   q i 1ð          f , ij  U f, ij
                               Þm + j, i 2Þm + j ¼ U p,i 1, j + η       (3.357)
                           c i 1ð  ð                 f,i 1, j  U f ,i 1, j
                                  Þm + j, i 1Þm + j ¼ U p, ij + η       (3.358)
                               c i 1ð  ð               f, ij U f, ij

              3.6.2.2 Symmetrical block arrangement
              For symmetrical block arrangement, P is an m (n+1) mn matrix:
                                (  ∗
                                  p       ,         i ¼ 1,⋯,n 1
                                   l, i 1ð  Þm + j
                     p l, i 1ð  Þm + j ¼  ∗   ∗
                                  p        + p    , i ¼ n               (3.359)
                                   l, n 1ð  Þm + j  l,nm + j
                     ð l ¼ 1, 2, …, mn +1Þ; j ¼ 1, 2, …, mÞ
                                 ð
   142   143   144   145   146   147   148   149   150   151   152