Page 177 - Design and Operation of Heat Exchangers and their Networks
P. 177

Thermal design of evaporators and condensers  165


              with d 0 ¼0.01m. The relationship to surface roughness F w is given by
              Eq. (4.70).
                 The relationship between the perimeter-averaged heat transfer coeffi-
              cient and the flow parameters G and _x can be expressed as
                                           h                  i
                                         0:25    0:1        0:3
                             F G ¼ G=G 0 Þ  1 p     q=q cr,pb  _ x       (4.80)
                                 ð
                                                 r
                                 2
              where G 0 ¼100kg/m s. For p r  0.1
                                q cr,pb =q cr,0:1 ¼ 3:2p 0:45  ð 1 p r Þ 1:2  (4.81)
                                                r
              For p r <0.1
                                                   0:17  0:8
                                 q cr,pb =q cr,0:1 ¼ 1:2 p  + p          (4.82)
                                                  r     r
                               h         i  0:5
                                  ρ  ρ ρ            0:25 Pr  0:245  at p r ¼ 0:1  (4.83)
                q cr,0:1 ¼ 0:144Δh v  l  g  g  ð gσ=ρ Þ  l
                                                   l
                 The range of validity of the earlier equations is 4mm d 25mm,
              0.005μm R a  5μm, and 0.03 p r  0.93 for cryogenic fluids and
              0.005 p r  0.85 for other fluids, λ w δ t  0.7W/K.

              4.1.2.10 Nucleate flow boiling in horizontal tubes with thin
              tube wall, λ w δ t <0.7W/K
              For flow boiling in horizontal tubes, the effects of nonuniform circumfer-
              ential wall temperature and partial wetted wall surface can be taken into
              account by modifying the exponent n h and coefficient C F,h (Kind and Saito,
              2013)
                                       n h ¼ κn h,λ w δ t  0:7           (4.84)

                                     C F,h ¼ ψC F,h,λ w δ t  0:7         (4.85)
              where the factor κ can be written by

                          κ ¼ 0:675 + 0:325tanh 3:711 λ w δ t  0:0324ð½  ÞŠ  (4.86)
                 The value of ψ depends on the flow pattern (see Fig. 4.3).
                 For stratified and wavy flow

                           ψ ¼ 0:46 + 0:4tanh 3:387 λ w δ t  0:00862ð½  ÞŠ  (4.87)
              For slug flow
                         ψ ¼ 0:671 + 0:329tanh 3:691 λ w δ t  0:00842ð½  ÞŠ  (4.88)
              For annular flow

                          ψ ¼ 0:755 + 0:245tanh 3:702 λ w δ t  0:0125ð½  ÞŠ  (4.89)
   172   173   174   175   176   177   178   179   180   181   182