Page 178 - Design and Operation of Heat Exchangers and their Networks
P. 178

166   Design and operation of heat exchangers and their networks


          4.1.2.11 Critical heat flux
          The critical heat flux for upward flow through vertical tubes can be evalu-
          ated by (Drescher and K€ohler, 1981; Herbst, 2013)

                                         3
                                            F
                                  q cr ¼ 10 F p r d F L F G           (4.90)
          where
                                   ¼ 10:3 17:5p r +8p 2               (4.91)
                                F p r               r

                                          p ffiffiffiffiffiffiffiffiffi
                                F d ¼ max   d 0 =d,0:6                (4.92)
                             F G ¼ e  1:5_x ð G=G 0 Þ 0:68p r  1:2_x 0:3  (4.93)
                                            2
          with d 0 ¼0.008m and G 0 ¼1000kg/m s

                                     1,       L=d   80
                               F L ¼  2a hom d=L                      (4.94)
                                     e      , L=d < 80
             The homogenous void fraction is expressed as
                                            ρ _x
                                             l
                                 a hom ¼                              (4.95)
                                       ρ _x + ρ 1  _xð  Þ
                                        l    g
             The    validity  range  of  Eq.  (4.90)  is  4mm d 40mm,
                                        2                2
          29bar p 200bar, and 500kg/m s G 5000kg/m s and the subcooling
          at inlet Δt sub  75K.
                                                   ð
                                         ð 0:68p r  0:3Þ ln G=G 0 Þ  lnF G
             Since F G can be rewritten as _x ¼              , the critical void
                                                    ð
                                             1:5+ 1:2ln G=G 0 Þ
          fraction can be obtained from Eq. (4.90) as

                                                        3
                                                           F
                                  ð
                   ð 0:68p r  0:3Þ ln G=G 0 Þ  lnq cr +ln 10 F p r d F L
                _ x ¼                                                 (4.96)
                                           ð
                                 1:5+1:2ln G=G 0 Þ
             For horizontal tubes, dry out at the top and bottom of the tube inside
          happens at different void fraction. The difference can be obtained from
                                                    16
                            Δ_x cr ¼ _x cr,low   _x cr,up ¼           (4.97)
                                                        2
                                                 ð 2+ FrÞ
          where the modified Froude number is defined by
                                              p
                                         _ x cr G= ρ g
                                               ffiffiffiffiffi
                                Fr ¼ r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  (4.98)

                                       gd ρ  ρ   cosθ
                                           l   g
          The critical void fractions can be written as
                                  _ x cr,up ¼ _x cr  Δ_x cr =2        (4.99)
   173   174   175   176   177   178   179   180   181   182   183