Page 185 - Design and Operation of Heat Exchangers and their Networks
P. 185

Thermal design of evaporators and condensers  173


              The local Reynolds number in Eq. (4.143) is defined as
                                         _
                                         Γ   gρ ρ  ρ Þδ 3
                                                ð
                                                     v
                                                 l
                                               l
                                   Re x ¼  ¼                            (4.145)
                                         μ l     3μ 2 l
                    _
              where Γ is the condensate mass flow rate per unit width
                                          gρ ρ  ρ Þδ 3
                                            ð
                                      _     l  l  v
                                      Γ ¼                               (4.146)
                                              3μ l
              and δ is the local film thickness.
                 For the case that the condensation begins at the top of the plate, that is, at
                                                           _
              x¼0, the condensate mass flow rate per unit width Γ 0 ¼ 0, we have
                                    "                       # 1=4
                                       3
                                                         3 3
                                4 3=4  gλ ρ ρ  ρ Þ T s  T w Þ x
                                         ð
                                                 ð
                            _          l  l  l  v
                            Γ ¼                   3                     (4.147)
                                 3            μ Δh V
                                               l
                                                  3     1=4
                                          ð
                                       gρ ρ  ρ Þλ Δh v
                                            l
                                         l
                                                v
                                                  l
                                  α x ¼                                 (4.148)
                                         4μ T s  T w Þx
                                           ð
                                           l
                                                           _
                                                                  _
                 If there is an initial condensate flow rate at x¼0, Γ x¼0 ¼ Γ 0 , we can add
              an additional plate length x 0
                                           _
                                  3 4=3  Δh v Γ 4=3    μ l    1=3
                                            0
                             x 0 ¼                                      (4.149)
                                                   ð
                                   4 λ l T s  T w Þ gρ ρ  ρ Þ
                                       ð
                                                   l
                                                     l
                                                         v
                 Then, we can use Eqs. (4.147), (4.148) by adding this fictitious plate
              segment.
                 The mean heat transfer coefficient can be obtained by
                            ð
                          1  L + x 0    4 L + x 0 Þα x¼L + x 0   x 0 α x¼x 0
                                         ð
                     α L ¼       α x dx ¼                               (4.150)
                          L             3           L
                             x 0
                 The local and mean Nusselt numbers for the turbulent condensate film
              can be found in Numrich and M€uller (2013) as follows:
                                     α x,tur l  0:0283Re 7=24  Pr 1=3
                                                      x
                                                            l
                            Nu x,tur ¼    ¼                  1=6        (4.151)
                                      λ l   1+9:66Re   3=8 Pr
                                                      x     l
                                                     7=24  1=3
                                    α L,tur l  0:02Re L  Pr l
                           Nu L,tur ¼     ¼             3=8   1=6       (4.152)
                                            1+20:52Re  L   Pr l
                                      λ l
   180   181   182   183   184   185   186   187   188   189   190