Page 186 - Design and Operation of Heat Exchangers and their Networks
P. 186

174   Design and operation of heat exchangers and their networks


             The Nusselt number for laminar and turbulent regions was superimposed
          by Numrich and M€uller (2013) as follows:
                               α x l  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                   2
                         Nu x ¼   ¼ f μ  ð f well Nu x,lam Þ +Nu 2   (4.153)
                                                         x,tur
                                λ f
                               α L l  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                   2
                         Nu L ¼   ¼ f μ  ð f well Nu L,lam Þ +Nu 2   (4.154)
                                                         L,tur
                               λ f
          in which the waviness correction f well is expressed as

                               Nu x,lam,well  1,     Re x < 1
                         f well ¼        ¼      0:04                 (4.155)
                                Nu x,lam     Re x  ,Re x   1
          and the correction factor for temperature-dependent viscosity is given by
                                                 1=4
                                   f μ ¼ μ =μ                        (4.156)
                                         l,s  l,w
                                                                         4
             The validity range of Eqs. (4.153), (4.154) is Re x ,Re L <10 ,
          0.5<Pr l <500, 0.2<μ l,s /μ l,w <5.


          4.2.2 Condensation in tube bundles
          4.2.2.1 Condensation on a horizontal tube
          The laminar film condensation on a horizontal tube can be obtained by fol-
          lowing the Nusselt film theory. The analytical solution reveals that the film
          thickness at the top position of the tube at θ¼0is
                                                      1=4
                                      3μ λ l T s  T w Þd
                                          ð
                                        l
                              δ θ¼0 ¼                                (4.157)
                                     2gρ ρ  ρð  l  v ÞΔh v
                                        l
          which corresponds to the local heat transfer coefficient of
                                                    3     1=4
                                           ð
                                 λ l    2gρ ρ  ρ Þλ Δh v
                                             l
                                                    l
                                                 v
                                           l
                          α θ¼0 ¼   ¼                                (4.158)
                                            ð
                                δ θ¼0     3μ T s  T w Þd
                                            l
          The condensate mass flow rate per unit tube length at the bottom of the tube
          at θ¼π can be obtained as
                                           "                       # 1=4
                                        3=4

                            π

                                                       3
                                                                3 3
                         2 3=4 3=8  Γ 2=3Þ  gρ ρ  ρ Þλ T s  T w Þ d
                                              ð
                                                        ð
                                  ð
               _                              l  l  v  l
               Γ θ¼π ¼ 2
                            3    Γ 7=6Þ              μ Δh 3 v
                                  ð
                                                      l
                          "                       # 1=4
                                      3
                                                3 3
                           gρ ρ  ρ Þλ T s  T w Þ d
                                       ð
                              ð
                                    v
                                      l
                             l
                                l
                   ¼ 0:759
                                    μ Δh 3
                                     l   v
                                                                     (4.159)
   181   182   183   184   185   186   187   188   189   190   191