Page 214 - Design and Operation of Heat Exchangers and their Networks
P. 214

Optimal design of heat exchangers  203


                 The Hagen number for turbulent flow can be calculated with the follow-
              ing correlations:
                          2
             Hg    ¼ ϕ  Re +Re  2 0:1s l =s t
                tur,i  t,n  tb  tb
               ( "                      #                                    )
                                      0:6
                                 ð
                         ½
                       0:61 0:94= s l =d o ފ  0:47 s l =s t  1:5Þ
                                                ð
                                                                     ð
                                                             ð
                  0:11 +                   10          +0:015 s t =d o  1Þ s l =d o  1Þ
                                    1:3
                         ð s t =d o  0:85Þ
                                                                          (5.52)
                            2
              Hg tur,s,0  ¼ ϕ t,n Re +Re 1:75
                                 tb
                            tb
                   ( "                  #                           )
                                0:6                  3             3
                      1:25 +         1:08  +0:2 s l =s t  1ð  Þ  0:005 s t =s l  1Þ  (5.53)
                                                            ð
                           ð s t =d o  0:85Þ
                          8                                        5
                            Hg     ,                   Re tb   2:5 10
                          <    tur,s,0
                                                   5
                   Hg    ¼             Re tb  2:5 10                      (5.54)
                     tur,s                                         5
                          : Hg tur,s,0  1+      5    ,Re tb > 2:5 10
                                         3:25 10
                       8
                            1     1    1
                       >
                       >                 ,           N rc < 10, s l   s
                       >                                         l, min
                       >       2
                       >          N rc  10
                          ð
                       >  2 s t =d o Þ
                       <
                                         2
                  ϕ t,n  ¼     s d =d o  1       1  1                     (5.55)
                       > 2                         , N rc < 10, s l < s
                       >                                         l, min
                       >
                       >   ð s t =d o Þ s t =d o  1ð  Þ  N rc  10
                       >
                       >
                       :
                         0,                               N rc   10
                                                               6
                 Eqs. (5.40)–(5.42) are valid for 1<Re t,d <2 10 , 0.7 Pr 700,
              7.9mm d o  73mm, 1.02 s t /d o  3.0, 0.6 s l /d o  3.0, 2 N rc  15 for
              inline tube bundles, and 4 N rc  80 for staggered tube bundles.
                 The correction factors in Eq. (5.39) are calculated as follows:
                 J c is the correction factor for baffle configuration given by Eq. (5.56):
                                      J c ¼ 0:55 + 0:72F c               (5.56)
                 J l is the correction factor for the effects of tube-to-baffle and baffle-
              to-shell leakages (A and E streams):
                                   ð
                            J l ¼ 0:44 1 r s Þ +1 0:44 1 r s Þ½  ð  Še  2:2r lm  (5.57)
              where
                                             ð
                                     r s ¼ A sb = A sb + A bt Þ          (5.58)
                                         ð
                                     r lm ¼ A sb + A bt Þ=A sc           (5.59)
                 The correction factor for the leakage effect on the pressure drop, ζ l ,is
              expressed as
                                                     ð
                                                 0:8 0:15 1 + r s Þ
                                         1:33 1 + r s Þr
                                   ζ ¼ e    ð    lm                      (5.60)
                                    l
   209   210   211   212   213   214   215   216   217   218   219