Page 235 - Design and Operation of Heat Exchangers and their Networks
P. 235

224   Design and operation of heat exchangers and their networks


                  G 2     1    2         1   1     4fL   1       2
              Δp ¼       1 σ + K c +2            +          1 σ  K e
                   2  ρ in              ρ out  ρ in  ρ d h  ρ out
                                                   m
                                                                  (5.106)

                The entrance and exit pressure loss coefficients K c and K e for turbulent
             flow for a multiple square-tube heat exchanger core with abrupt-
             contraction entrance and abrupt-expansion exit are correlated by taking
             the data from Fig. 5-4 of Kays and London (1984) as follows:

                                             0:008106    9:5455
                                   2
               K c ¼ 0:05972σ  0:4287σ +0:3737       +           2  (5.107)
                                              ln Re 1ðÞ
                                                         ln Re 1ðÞ
                                                                    !
                                   0:1813    0:6714       19:68
                           2σ 1+         +           +            σ
                                                    2
                                                                3
                                   ln Re 1ðÞ
                        2                    ln Re 1ðÞ   ln Re 1ðÞ
                K e ¼ 1 σ
                                    204:9
                                                           ð
                                1        +0:1216 ð 1 σ 0:208 Þ 1 σÞ
                                     Re 1ðÞ
                                                                  (5.108)
                At the entrances, Re (1),h,in ¼Gd h(1),h /μ h,in ¼14.6 0.002912/2.672
              10  5 ¼1591, Re (1),c,in ¼1793. Similarly, we have Re (1),h,out ¼1591 and
             Re (1),c,out ¼1793. Substituting the data into Eqs. (5.107), (5.108),we obtain
             the coefficients as K c,h ¼0.5057, K c,c ¼0.4855, K e,h ¼0.2867, and
             K e,c ¼0.2269.
                The entrance pressure drop of flue gas flow can be expressed as
                      G 2                  14:6 2
                        1 ðÞ,h     2                         2
               Δp in,h ¼    1 σ + K c,h ¼           1 0:3923 +0:5057
                                h
                      2ρ h,in            2 0:6988
                    ¼ 206:2Pa
                                                                  (5.109)
                The exit pressure drop is calculated as
                      G 2                      2
                        1 ðÞ,h        2     14:6                     2
              Δp out,h ¼    K e,h  1+ σ  ¼          0:2867 1+ 0:3923
                      2ρ              h   2 0:6988
                        h,out
                    ¼ 85:31 Pa
                                                                  (5.110)
                The frictional pressure drop is obtained by
                                L
                      2f 2ðÞ,h G 2 2 ðÞ,h h  2 0:03709 15:95  0:994
                                                    2
                Δp f,h ¼          ¼                        ¼ 10,270 Pa
                         ρ d h2ðÞ,h     0:6988 0:002614
                          h
                                                                  (5.111)
   230   231   232   233   234   235   236   237   238   239   240