Page 234 - Design and Operation of Heat Exchangers and their Networks
P. 234

Optimal design of heat exchangers  223



                    Since Re* (2) <Re (2) <Re* (2) +1000 for both hot and cold fluids, we
                 use the linear interpolation with Eqs. (3.275)–(3.280) to determine f and
                 j in the transition region:
                                          ∗
                               Re 2ðÞ,h   Re
                                          2 ðÞ,h  1560 1320
                           γ ¼               ¼           ¼ 0:2407
                            h
                                    1000          1000
                                                  8:12
                  f  2 ðÞ,h, Re 2ðÞ,h ¼Re ∗  ¼
                               2 ðÞ,h  ∗   0:74        0:41       0:02
                                    Re        l s,h =d    ð s fs,h =h fs,h Þ
                                       2 ðÞ,h     h2ðÞ,h
                                         8:12
                  ¼                       0:41                 0:02  ¼ 0:02874
                    1320 0:74    0:0063=0:002614Þ    0:001724=0:009384Þ
                            ð
                                               ð
                                                      1:12
                 f          ∗
                  2 ðÞ,h, Re 2ðÞ,h ¼Re  + 1000  ¼
                            2 ðÞ,h      ∗        0:36        0:65         0:17
                                      Re   + 1000   l s,h =d    δ f ,h =d
                                        2 ðÞ,h          h2ðÞ,h      h2ðÞ,h
                                        1:12
                 ¼         0:36             0:65              0:17  ¼ 0:06344
                                ð
                  ð 1320 + 1000Þ    0:0063=0:002614Þ    0:000146=0:002614Þ
                                                ð
                       f  2 ðÞ,h  ¼ 1 γ h Þf  2 ðÞ,h, Re 2ðÞ,h ¼Re ∗  + γ h f  2 ðÞ,h, Re 2ðÞ,h ¼Re ∗  + 1000
                            ð
                                             2 ðÞ,h           2 ðÞ,h
                       ¼ 1 0:2407Þ 0:02874 + 0:2407 0:06344 ¼ 0:03709
                         ð
                                                  0:53
                      j        ∗
                       h, Re 2ðÞ,h ¼Re  ¼
                                2 ðÞ,h     0:5         0:15       0:14
                                     Re ∗     l s,h =d    s fs,h =h fs,h
                                       2 ðÞ,h    h2ðÞ,h
                                          0:53
                      ¼                    0:15              0:14  ¼ 0:1621
                        1320 0:5    0:0063=0:002614Þ    0:001724=0:009384Þ
                              ð
                                               ð
                                                     0:21
                  j        ∗
                   h, Re 2ðÞ,h ¼Re  + 1000  ¼
                            2 ðÞ,h     ∗        0:4         0:24        0:02
                                     Re   + 1000   l s,h =d   δ f ,h =d
                                       2 ðÞ,h         h2ðÞ,h      h2ðÞ,h
                                         0:21
                  ¼          0:4            0:24               0:02  ¼ 0:008118
                                ð
                    ð 1320 + 1000Þ    0:0063=0:002614Þ    0:000146=0:002614Þ
                                                 ð
                           j h ¼ 1 γ h Þj h, Re 2ðÞ,h ¼Re ∗  + γ h j h, Re 2ðÞ,h ¼Re ∗  + 1000
                              ð
                                            2 ðÞ,h         2 ðÞ,h
                           ¼ 1 0:2407Þ 0:01621 + 0:2407 0:008118 ¼ 0:01426
                            ð
                    With the similar method, we can obtain the f and j factors for the cold
                 fluid as f (2),c ¼0.04214 and j c ¼0.01281.
                    From the definition of the Colburn j factor, Eq. (3.255), we obtain the
                 heat transfer coefficients of hot and cold fluids as
                                              1068 15:95
                            c p,h G 2ðÞ,h                          2
                      α h ¼ j h  2=3  ¼ 0:01426     2=3  ¼ 299:7W=m K
                             Pr                0:7301
                               h
                            c p,c G 2ðÞ,c    1006 11:71            2
                      α c ¼ j c  2=3  ¼ 0:01281     2=3  ¼ 189:5W=m K
                             Pr c              0:7102
                    The total pressure drop is given by
   229   230   231   232   233   234   235   236   237   238   239