Page 233 - Design and Operation of Heat Exchangers and their Networks
P. 233

222   Design and operation of heat exchangers and their networks


                              s fs,h h fs,h
                σ h ¼
                    s f,h h f,h + N fl,c h f,c +2δ p =N fl,h
                                0:001724 0:009384
                  ¼                                           ¼ 0:3923
                             ½
                                         ð
                    0:00187  0:00953 + 9  0:00953 + 2 0:0008Þ=8Š
                                                                  (5.104)
                              s fs,c h fs,c
                 σ c ¼
                     s f,c h f,c +2δ p + N fl,h h f,h =N fl,c
                                0:001724 0:009384
                   ¼                                         ¼ 0:4414
                             ð
                     0:00187  0:00953 + 2 0:0008 + 8 0:00953=9Þ
                                                                  (5.105)

              (3)  Calculation of heat transfer coefficients and pressure drops
             We use the correlations of Joshi and Webb (1987) to calculate the j and f
             factors. The mass fluxes of hot and cold fluids can be given as follows:

                                   0:8962     0:001724
                      _ m h  s fs,h                                   2
              G 2ðÞ,h ¼          ¼                         ¼ 15:95kg=m s
                     A c,h s fs,h  δ f,h  0:06139 0:001724 0:000146
                      _ m c  s fs,c  0:8296   0:001724                2
              G 2ðÞ,c ¼         ¼                          ¼ 11:71kg=m s
                     A c,c s fs,c  δ f,c  0:07739 0:001724 0:000146

                The Reynolds number in their correlation is defined by Eq. (3.266):

                                          15:95 0:002614
                               G 2ðÞ,h d h2ðÞ,h
                       Re 2ðÞ,h ¼       ¼                ¼ 1560
                                   μ h      2:672 10  5
                               G 2ðÞ,c d h2ðÞ,c  11:71 0:002614
                       Re 2ðÞ,c ¼       ¼               ¼ 1759
                                   μ c      1:741 10  5
                The critical Reynolds number indicating the flow transition from
             laminar to turbulent is expressed by Eq. (3.274) as

                                1:23      0:58
                         ð
                ∗     257 l s,h =s fs,h Þ  ð δ f,h =l s,h Þ  d h2ðÞ,h
              Re    ¼           p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                 2 ðÞ,h
                       δ f,h +1:328  l s,h d h2ðÞ,h =Re 2ðÞ,h
                                          1:23                0:58
                                               ð
                           ð
                      257  0:0063=0:001724Þ    0:000146=0:0063Þ   0:002614
                    ¼                       p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                              0:000146 + 1:328  0:0063 0:002614=1560
                    ¼ 1320
                                        1:23 ð δ f,c =l s,c Þ 0:58
                              257 l s,c =s fs,c Þ
                                 ð
                                                    d h2ðÞ,c
                      Re ∗  ¼           p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 1358
                         2 ðÞ,c
                               δ f,c +1:328  l s,c d h2ðÞ,c =Re 2ðÞ,c
   228   229   230   231   232   233   234   235   236   237   238