Page 232 - Design and Operation of Heat Exchangers and their Networks
P. 232

Optimal design of heat exchangers  221



                 (2)  Calculation of geometric parameters
                 We use the optimal geometric parameters of Mishra et al. (2009) as the initial
                 values as length of the heat exchanger in the hot fluid flow direction
                 L h ¼0.994m, length of the heat exchanger in the cold fluid flow direction
                 L c ¼0.887m,  fin  height  h f,h ¼h f,c ¼0.00953m,  fin  thickness
                 δ f,h ¼δ f,c ¼0.000146m, fin strip length l s,h ¼l s,c ¼0.0063m, number of fins
                                             1
                 per meter FPM h ¼FPM h ¼534.9m , and number of fin layers N fl,h ¼8.
                    To reduce the heat loss to the surrounding, we put the cold side fin layer
                 at the outermost sides of the exchanger; therefore, the number of fin layers
                 for cold fluid N fl,c is one more than N fl,h :
                                   N fl,c ¼ N fl,h +1 ¼ 8+ 1 ¼ 9     (5.101)
                    The fin-free spacing in height
                         h fs,h ¼ h f,h  δ f,h ¼ 0:00953 0:000146 ¼ 0:009384 m
                    The fin pitch
                               s f,h ¼ 1=FPM h ¼ 1=534:9 ¼ 0:00187 m
                    The fin-free spacing in width
                        s fs,h ¼ s f,h  δ f,h ¼ 0:001870 0:000146 ¼ 0:001724 m
                    The hydraulic diameter for the calculation of the entrance and exit
                 pressure loss is defined by Eq. (3.245):

                             2h fs,h s fs,h  2 0:009384 0:001724
                      d h1ðÞ,h ¼     ¼                     ¼ 0:002912 m
                             h fs,h + s fs,h  0:009384 + 0:001724
                    The hydraulic diameter for the correlations of Joshi and Webb (1987) is
                 defined by Eq. (3.246):
                            2h fs,h s fs,h  δ f,h Þ
                                ð
                  d h2ðÞ,h ¼
                         h fs,h + s fs,h + h fs,h δ f,h =l s,h
                                      ð
                          2 0:009384  0:001724 0:000146Þ
                  ¼                                           ¼ 0:002614m
                    0:009384 + 0:001724 + 0:009384 0:000146=0:0063
                    Similarly, we have h fs,c ¼0.009384m, s f,c ¼0.001870m,
                 s fs,c ¼0.001724m, d h(1),c ¼0.002912m, and d h(2),c ¼0.002614m.
                    The crossflow areas for hot and cold fluids are calculated with
                 Eqs. (5.102), (5.103), respectively:
                           A c,h ¼ FPM h L c N fl,h h fs,h s fs,h ¼ 534:9 0:887 8
                                 0:009384 0:001724 ¼ 0:06139 m 2     (5.102)
                           A c,c ¼ FPM c L h N fl,c h fs,c s fs,c ¼ 534:9 0:994 9
                                 0:009384 0:001724 ¼ 0:07739 m 2     (5.103)
                    The ratio of free flow area to frontal area can be expressed as
   227   228   229   230   231   232   233   234   235   236   237