Page 349 - Design and Operation of Heat Exchangers and their Networks
P. 349

Dynamic analysis of heat exchangers and their networks  335


                                      yτ   f gτ + g Δf τ
              can be applied to Eqs. (7.38)–(7.40), which yield the following linear
              problem:
                                                             !
                 ∂θ 1  _  ∂θ 1               ^ U 2  ^ U 1  _
                                 ð
               C 1   + C 1   U 1 θ w  θ 1 Þ           C 1  U 1 ð ^ t 1  ^ t 2 Þ ¼ 0 (7.65)
                                                    ^
                  ∂τ     ∂x                ^ U 1 + ^ U 2 C 1
                                                    _
                                                    "              #
                                                         n
                ∂θ 2     n   ∂θ 2               ^ U 1  ð  1Þ ^ U 2
                     ð
                                    ð
              C 2   +  1Þ _ C 2   U 2 θ w  θ 2 Þ +           _ C 2  U 2 ð ^ t 1  ^ t 2 Þ ¼ 0
                 ∂τ          ∂x               ^ U 1 + ^ U 2 ð  ^ n ^
                                                       1Þ _ C 2
                                                                          (7.66)
                   ∂θ w                           ^ U 2 U 1   ^ U 1 U 2
                 C w    U 1 θ 1  U 2 θ 2 + U 1 + U 2 θ w     ð ^ t 1  ^ t 2 Þ ¼ 0  (7.67)
                    ∂τ                              ^ U 1 + ^ U 2

                                   0      0       0      0
                                θ 1 x , τ ¼ θ τðÞ, θ 2 x , τ ¼ θ τðÞ      (7.68)
                                   1      1       2      2
                                    τ ¼ 0 : θ 1 ¼ θ 2 ¼ θ w ¼ 0           (7.69)
                 A special case is that at τ¼0, the flow direction, thermal flow rates, and
              heat transfer parameters have a sudden change, and then for τ>0, they do
                                             _
                                                  _
              not vary with time any more, that is, C ¼ C, U ¼ U, and the inlet fluid tem-
              perature variations can be arbitrary. This case belongs to a linear problem,
              and Eqs. (7.65)–(7.67) are exact. Otherwise, Eqs. (7.65)–(7.67) are
              approximate.

              7.1.2.7 Analytical solution in the Laplace domain
              The Laplace transform of Eqs. (7.65)–(7.68) yields a nonhomogeneous
              ordinary differential equation system:
                                                             !
                  e
               _  dθ 1                       ^ U 2  ^ U 1 e _
                                      e
                                e
                       ð
               C 1   + sC 1 + U 1 Þθ 1  U 1 θ w       C 1   e U 1 ð ^ t 1  ^ t 2 Þ ¼ 0 (7.70)
                                                    ^
                  dx                       ^ U 1 + ^ U 2 C 1
                                                    _
                                       e
                                   n  dθ 2
                               ð  1Þ _ C 2  + sC 2 + U 2 θ 2  U 2 θ w
                                                           e
                                                    e
                                       dx
                                     "               #
                                          n
                                 ^ U 1  ð
                            +           1Þ ^ U 2 e _   ^ t 1  ^ t 2 Þ ¼ 0  (7.71)
                                              C 2   e U 2 ð
                                          ^ n ^
                               ^ U 1 + ^ U 2 ð  _
                                        1Þ C 2
                        1                         ^ U 2 U 1   ^ U 1 U 2
                                                     e
                                                           e
               θ w ¼
                                  e
               e                U 1 θ 1 + U 2 θ 2 +                ^ t 1  ^ t 2 Þ (7.72)
                                                                   ð
                                        e
                   sC w + U 1 + U 2           ^ U 1 + ^ U 2 sC w + U 1 + U 2
                                          0             0
                                    0             0
                                θ 1 x , s ¼ θ sðÞ, θ 2 x , s ¼ θ sðÞ
                                e        e     e       e                  (7.73)
                                    1     1       2     2
   344   345   346   347   348   349   350   351   352   353   354