Page 350 - Design and Operation of Heat Exchangers and their Networks
P. 350

336   Design and operation of heat exchangers and their networks


          By eliminating θ w with Eq. (7.72), Eqs. (7.70)–(7.71) can be written in the
                        e
          matrix form
                            dΘ                        ^ Rx
                             e
                                        ^
                                                   ^
                                                        ^
                               ¼ AΘ + BT ¼ AΘ + BHe D                 (7.74)
                                   e
                                              e
                            dx
          in which the elements of the coefficient matrices A and B are

                    1           sC w + U 2                  U 1 U 2
            a 11 ¼      sC 1 +             U 1 , a 12 ¼                 ,
                    _        sC w + U 1 + U 2          _
                                                         ð
                   C 1                                C 1 sC w + U 1 + U 2 Þ
                          n                    n
                      ð  1Þ U 1 U 2        ð  1Þ         sC w + U 1
              a 21 ¼                , a 22 ¼     sC 2 +            U 2 ,

                   _ C 2 sC w + U 1 + U 2    _ C 2    sC w + U 1 + U 2
                                "                                        #

                                                                     ^
                                                        ^
                                           ^
                          1       sC w + U 2 U 2     U 1 U 1      ^ U 1 U 2 e
          b 12 ¼ b 11 ¼                      e U 1 +          e U 2    _ C 1 ,
                         ^                                         ^
                     _ C 1 U 1 + ^ U 2  sC w + U 1 + U 2  sC w + U 1 + U 2  _ C 1
                               2                                        3
                           n                                     n
                        ð  1Þ      U ^ U        sC w + U 1  ^ U 1  ð  1Þ ^ U ^ U
                                     2 2
            b 21  ¼ b 22  ¼       4        e U +          e U      1 2 e _ C 2 5
                                            1
                                                           2
                                                                  ^ n ^
                      _ C  ^ U + ^ U  sC w + U + U 2  sC w + U + U 2   1Þ _ C
                                      1
                                                     1
                       2  1  2                                ð     2
             The solution of Eq. (7.74) can expressed as
                          ð
                    Rx        R x ξÞ   1    ^ Rξ  ^   Rx       ^ Rx  ^
                               ð
             Θ ¼ He D + He         H B ^ He Ddξ ¼ He D + He D         (7.75)
              e
          in which R is the eigenvalue matrix of the coefficient matrix A,

                r 1 0
          R ¼        , where
                0 r 2
                                        q  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                             1                      2
                       r 1,2 ¼  a 11 + a 12    ð a 11  a 12 Þ +4a 12 a 21  (7.76)
                             2
          H is the corresponding eigenvector matrix:

                           h 11 h 12        1           1
                     H ¼           ¼                                  (7.77)
                           h 21 h 22  ð r 1  a 11 Þ=a 12 ð r 2  a 11 Þ=a 12
                                       H ¼ HQ                         (7.78)

                                                 ð
                                 q 11 = ^r 1  r 1 Þ q 12 = ^r 2  r 1 Þ
                                     ð
                            Q ¼                                       (7.79)
                                 q 21 = ^r 1  r 2 Þ q 22 = ^r 2  r 2 Þ
                                     ð
                                                 ð

                                     q 11 q 12    1
                               Q ¼           ¼ H B ^ H                (7.80)
                                     q 21 q 22
   345   346   347   348   349   350   351   352   353   354   355