Page 172 - Determinants and Their Applications in Mathematical Physics
P. 172

4.12 Hankelians 5  157

                                          n
                                               i−1
                                      n−1
                                  =2        (uv)
                                         i=2
                                  =2  n−1 (uv) 1+2+3+···+n−1
                                           2  2    1 n(n−1)
                                      −(n−1)
                                  =2        (x − 1) 2    .
          which completes the proof.

          Exercises
          1. Prove that

                         |H m (x)| n =(−2) n(n−1)/2 1! 2! 3! ··· (n − 1)!,
                        0≤m≤2n−2
             where H m (x) is the Hermite polynomial.
          2. If

                                          P n−1
                                  A n =         P n   ,
                                               P n+1

                                         P n
             prove that
                                           2

                          n(n +1)A =2(P ) .              (Beckenbach et al.)
                                  n      n
          4.12.2  The Generalized Geometric Series and Eulerian
                  Polynomials
          Notes on the generalized geometric series φ m (x), the closely related function
          ψ m (x), the Eulerian polynomial A n (x), and Lawden’s polynomial S n (x) are
          given in Appendix A.6.
                                    ∞

                            ψ m (x)=   r x ,
                                        m r
                                    r=1

                          xψ (x)= ψ m+1 (x),                       (4.12.13)
                             m
                            S m (x)=(1 − x) m+1 ψ m ,  m ≥ 0,      (4.12.14)
                           A m (x)= S m (x),  m > 0,
                               A 0 =1,  S 0 = x.                   (4.12.15)
          Theorem (Lawden).
                                       λ n x n(n+1)/2
                      E n = |ψ i+j−2 | n =       ,
                                        (1 − x) n 2
                                       λ n n! x n(n+1)/2
                       F n = |ψ i+j−1 | n =        ,
                                       (1 − x) n(n+1)
                                          2 n(n+1)/2
                                     λ n (n!) x    (1 − x n+1 )
                      G n = |ψ i+j | n =                     ,
                                           (1 − x) (n+1) 2
   167   168   169   170   171   172   173   174   175   176   177