Page 176 - Determinants and Their Applications in Mathematical Physics
P. 176

4.12 Hankelians 5  161

          From (4.12.28) and (4.12.33),
                                      2

                                G n−1          G n−2
                      xu   n−1  =        F n             G n   ,
                                F n−1    G n   G n−1    G n−1
                     u n u   n−1  =  (1 − x n−1 )(1 − x n+1 )     v n    .  (4.12.35)
                                         n 2
                      u 2 n−1      x(1 − x )       v n+1
          From (4.12.16),
                         2

                  F n−1     E n−1      E n    G n−2
                          =       −
                  G n−1     G n−1     G n−1   G n−1

                              E n−1    E n          E n     G n−2
                          =                   1 −
                                      G n−1        E n−1    G n−1
                               E n
                       1       	  x n  
     x(1 − x n−1 )
                                         1 −
                      2
                     u n−1  = v n  1 − x n     1 − x n
                            x (1 − x)
                              n
                          =          v n .
                                  n 2
                             (1 − x )
          Replacing n by n +1,
                                1    x n+1 (1 − x)
                                   =            v n+1 .            (4.12.36)
                                              )
                                u 2  (1 − x n+1 2
                                 n
          Hence,
                                 2
                                     1  1 − x
                          	     
      	     n+1  
 2
                                   =                 v n  .        (4.12.37)
                            u n
                           u n−1     x   1 − x n    v n+1
          Eliminating v n /v n+1 from (4.12.35) yields the differential–difference equa-
          tion
                                    	      n+1
                                      1 − x
                               u n =            u   n−1 .          (4.12.38)
                                      1 − x n−1
          Evaluating u n as defined by (4.12.33) for small values of n, it is found that
                          2
                                           3
                                                           4
                   1!(1 − x )       2!(1 − x )      3!(1 − x )
              u 1 =         ,  u 2 =         ,  u 3 =        .     (4.12.39)
                    (1 − x) 2        (1 − x) 3       (1 − x) 4
          The solution which satifies (4.12.38) and (4.12.39) is
                                         n!(1 − x n+1 )
                              u n =  G n  =          .             (4.12.40)
                                          (1 − x) n+1
                                    F n
          From (4.12.36),
                                           (1 − x) 2n−1
                                   E n−1
                              v n =     =            ,
                                           (n − 1)! x
                                                  2 n
                                    E n
          which yields the difference equation
                                     (n − 1)! x
                                            2 n
                               E n =           E n−1 .             (4.12.41)
                                     (1 − x) 2n−1
   171   172   173   174   175   176   177   178   179   180   181