Page 179 - Determinants and Their Applications in Mathematical Physics
P. 179

164   4. Particular Determinants
                                      ∞
                                         (p) r e (r+p)t
                                   =              ,
                                            r!
                                     r=0
          where
                          (p) r = p(p + 1)(p +2) ··· (p + r − 1)   (4.12.52)
                                                    (p)
          and denote the corresponding determinant by E n :

                           E (p)  = ψ  (p)      ,  0 ≤ m ≤ 2n − 2,

                             n      m
                                      n
          where
                            ψ (p)  = D f
                                    m
                              m
                                   ∞
                                               m (r+p)t
                                      (p) r (r + p) e
                                =                      .           (4.12.53)
                                             r!
                                  r=0
          Theorem 4.59.
                                   e n(2p+n−1)t/2  n−1

                            (p)
                           E   =                   r!(p) r .
                                  (1 − e )
                            n          t n(p+n−1)
                                                r=1
          Proof. Put
                                   α r e t
                             g r =       ,  α r constant,
                                       t 2
                                  (1 − e )
          and note that, from (4.12.48),
                                          2
                                   g 1 = D (log f)
                                           pe t
                                      =         ,
                                             t 2
                                        (1 − e )
          so that α 1 = p and
                             log g r = log α r + t − 2 log(1 − e ),
                                                        t
                                       2e t
                           2
                         D (log g r )=       .                     (4.12.54)
                                          t 2
                                     (1 − e )
          Substituting these functions into the differential–difference equation, it is
          found that
                                           n−1

                               α n = nα 1 +2  (n − r)
                                            r=1
                                  = n(p + n − 1).                  (4.12.55)
          Hence,
                                  n(p + n − 1)e t
                              g n =            ,
                                          t 2
                                     (1 − e )
                                  (n − r)(p + n − r − 1)e t
                           g n−r =                      .          (4.12.56)
                                              t 2
                                         (1 − e )
   174   175   176   177   178   179   180   181   182   183   184