Page 182 - Determinants and Their Applications in Mathematical Physics
P. 182

4.13 Hankelians 6  167

          the upper limits that

                                     j
                                 i
                                           r+s−1
                           γ ij =      β ir 2  k r+s−2 β js .
                                r=1 s=1
          Hence,
                            2p+1 2q+1
                                           r+s−2
               γ 2p+1,2q+1 =2       β 2p+1,r 2  k r+s−2 β 2q+1,s .  (4.13.10)
                             r=1 s=1
          From the first line of (4.13.6), the summand is zero when r and s are even.
          Hence, replace r by 2r + 1, replace s by 2s + 1 and refer to (4.13.5) and
          (4.13.6),

                                p  q

                  γ 2p+1,2q+1 =2     β 2p+1,2r+1 β 2q+1,2s+1 2 2r+2s  k 2r+2s
                               r=0 s=0
                                p  q
                                            N

                           =2        λ pr λ qs  a j (2x j ) 2r+2s
                               r=0 s=0     j=1
                                     p            q
                               N

                           =2     a j  λ pr (2x j ) 2r  λ qs (2x j ) 2s
                               j=1  r=0          s=0
                               N

                           =2     a j g p (x j )g q (x j )
                               j=1
                           = α 2p+1,2q+1 ,                         (4.13.11)
          which completes the proof of case (i). Cases (ii)–(iv) are proved in a similar
          manner.

          Corollary.

                                       2
                      |α ij | n = |M| n = |N| |K| n
                                       n
                                        2
                                  = |β ij | |2 i+j−1
                                        n      k i+j−2 | n
                                             2

                                       n
                                                  i+j−2
                                  =      β ii  2 |2   k i+j−2 | n .  (4.13.12)
                                               n
                                      i=1
                               1
          But, β 11 =1 and β ii = , 2 ≤ i ≤ n. Hence, referring to Property (e) in
                               2
          Section 2.3.1,
                                       2
                                       n −2n+2
                              |α ij | n =2   |k i+j−2 | n .        (4.13.13)
          Thus, M can be expressed as a Hankelian.
   177   178   179   180   181   182   183   184   185   186   187