Page 183 - Determinants and Their Applications in Mathematical Physics
P. 183

168   4. Particular Determinants

            Define three other matrices M , K , and N of order n as follows:




                                             (symmetric),
                M =[α ] n
                       ij

                K =[2 i+j−1  (k i+j + k i+j−2 )] n  (Hankel),      (4.13.14)

                                             (lower triangular),
                N =[β ] n
                       ij
          where k r is defined in (4.13.5);
                                        j−1
                                    (−1)   u i−j + u i+j ,j ≤ i

                             α =        i−1                        (4.13.15)
                                    (−1)   u j−i + u i+j ,  j ≥ i,
                              ij

                             β =0,      j > i or i + j odd,
                              ij
                                  1
                           β     = µ ij ,  1 ≤ j ≤ i,
                                  2
                            2i,2j
                                       1
                       β        = λ ij + µ ij ,  0 ≤ j ≤ i.        (4.13.16)
                        2i+1,2j+1      2
                              1
          The functions λ ij and µ ij appear in Appendix A.10. µ ij =(2j/i)λ ij .
                              2
          Theorem 4.61.

                                   M = N K(N ) .
                                                T
            The details of the proof are similar to those of Theorem 4.60.
            Let
                                           T
                                 N K (N ) =[γ ] n
                                               ij
          and consider the four cases separately. It is found with the aid of
          Theorem A.8(e) in Appendix A.10 that
                                   N
                                        -                   .
                       γ   2p+1,2q+1  =  a ij g q−p (x j )+ g q+p+1 (x j )
                                  j=1

                                = α 2p+1,2q+1                      (4.13.17)

          and further that γ = α    for all values of i and j.
                          ij   ij
          Corollary.
                                        2
                    |α | n = |M | n = |N | |K | n
                      ij               n
                                       2 n   i+j−2

                                 = |β | 2 2     (k i+j + k i+j−2 )
                                     ij n
                                                               n
                                     2
                                                                   (4.13.18)
                                    n
                                 =2 |k i+j + k i+j−2 | n

          since β    = 1 for all values of i. Thus, M can also be expressed as a
                ii
          Hankelian.
          4.13.2 The Factors of a Particular Symmetric Toeplitz
                  Determinant
          The determinants
                                         1
                                    P n = |p ij | n ,
                                         2
   178   179   180   181   182   183   184   185   186   187   188